满分5 > 高中数学试题 >

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,...

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.证明:EF∥平面SAD.

manfen5.com 满分网
欲证EF∥平面SAD,根据直线与平面平行的判定定理可知只需证EF与平面SAD内一直线平行,取SD的中点G,连接FG,AG 可先证四边形AEFG为平行四边形,从而EF∥AG,EF⊄平面SAD,AG⊂平面SAD,满足定理所需条件. 证明:取SD的中点G,连接FG,AG 而E,F分别为AB,SC的中点,G为SD的中点 ∴FG∥CD,FG=CD 而AE∥CD,AE=CD 则AE=FG且AE∥FG 则四边形AEFG为平行四边形 EF∥AG,EF⊄平面SAD,AG⊂平面SAD ∴EF∥平面SAD.
复制答案
考点分析:
相关试题推荐
如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

manfen5.com 满分网 查看答案
如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.求证:E,B,F,D1四点共面;
manfen5.com 满分网
查看答案
如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;
(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值圾示).

manfen5.com 满分网 查看答案
在平面上,两条直线的位置关系有相交、平行、重合三种.已知α,β是两个相交平面,空间两条直线l1,l2在α上的射影是直线S1,S2,l1,l2在β上的射影是直线t1,t2.用S1与S2,t1与t2的位置关系,写出一个总能确定l1与l2是异面直线的充分条件:    查看答案
设α、β、r为平面,m、n、l为直线,以下四组条件:①α⊥β,α∩β=l,m⊥l②α∩r=m,α⊥r,β⊥r;③α⊥r,β⊥r,m⊥α;④n⊥αn⊥β,m⊥α;可以作为m⊥β的一个充分条件是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.