满分5 > 高中数学试题 >

在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a...

在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=( )
A.22
B.23
C.24
D.25
根据等差数列的性质,我们可将ak=a1+a2+a3+…+a7,转化为ak=7a4,又由首项a1=0,公差d≠0,我们易得ak=7a4=21d,进而求出k值. 【解析】 ∵数列{an}为等差数列 且首项a1=0,公差d≠0, 又∵ak=(k-1)d=a1+a2+a3+…+a7=7a4=21d 故k=22 故选A
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(1,1),2manfen5.com 满分网+manfen5.com 满分网=(4,2),则向量manfen5.com 满分网manfen5.com 满分网的夹角为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知集合A={-1,0,1},B={1,2},则A∩B等于( )
A.{-1,0,1}
B.{0,1}
C.{1}
D.{1,2}
查看答案
已知函数f(x)=2manfen5.com 满分网sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函数f(x)的最小正周期及在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若f(x)=manfen5.com 满分网,x∈[manfen5.com 满分网manfen5.com 满分网],求cos2x的值.
查看答案
已知函数f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间manfen5.com 满分网上的最小值.
查看答案
已知函数f(x)=manfen5.com 满分网sin2xsinφ+cos2xcosφ-manfen5.com 满分网sin(manfen5.com 满分网+φ)(0<φ<π),其图象过点(manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.