设a为非负实数,函数f(x)=x|x-a|-a.
(Ⅰ)当a=2时,求函数的单调区间;
(Ⅱ)讨论函数y=f(x)的零点个数,并求出零点.
考点分析:
相关试题推荐
椭圆
上任一点P到两个焦点的距离的和为6,焦距为
,A,B分别是椭圆的左右顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k
1,k
2,证明:k
1•k
2为定值;
(Ⅲ)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设
,求函数f(x)的最大值.
查看答案
如图,已知直四棱柱ABCD-A
1B
1C
1D
1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B
1C
1上的动点,且EF∥CC
1,CD=DD
1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD
1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD
1D的体积.
查看答案
已知正项等差数列a
n的前n项和为S
n,若S
3=12,且2a
1,a
2,a
3+1成等比数列.
(Ⅰ)求{a
n}的通项公式;
(Ⅱ)设
,记数列b
n的前n项和为T
n,求T
n.
查看答案
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案
在△ABC中,已知A=45°,
.
(Ⅰ)求sinC的值;
(Ⅱ)若BC=10,求△ABC的面积.
查看答案