满分5 > 高中数学试题 >

直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B. (...

直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.
(I)求实数k的取值范围;
(II)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
(Ⅰ)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,由题意知,由此可知实数k的取值范围. (Ⅱ)设A、B两点的坐标分别为(x1,y1)、(x2,y2),由题意得,由此入手可求出k的值. 【解析】 (Ⅰ)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0.① 依题意,直线l与双曲线C的右支交于不同两点,故 解得k的取值范围是-2<k<. (Ⅱ)设A、B两点的坐标分别为(x1,y1)、(x2,y2),则由①式得② 假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0). 则由FA⊥FB得:(x1-c)(x2-c)+y1y2=0. 即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0. 整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0.③ 把②式及代入③式化简得. 解得 可知使得以线段AB为直径的圆经过双曲线C的右焦点.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问manfen5.com 满分网的夹角θ取何值时manfen5.com 满分网的值最大?并求出这个最大值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当D1E⊥平面AB1F时,求二面角C1-EF-A的大小(结果用反三角函数值表示).
查看答案
已知6sin2α+sinαcosα-2cos2α=0,manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
某日中午12时整,甲船自A处以16km/h的速度向正东行驶,乙船自A的正北18km处以24km/h的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是    km/h. 查看答案
设A、B为两个集合.下列四个命题:
①A⊈B⇔对任意x∈A,有x∉B;
②A⊈B⇔A∩B=∅;
③A⊈B⇔A⊉B;
④A⊈B⇔存在x∈A,使得x∉B.
其中真命题的序号是    .(把符合要求的命题序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.