满分5 > 高中数学试题 >

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是A...

manfen5.com 满分网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2manfen5.com 满分网,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
(1)设G为PC的中点,连接FG,EG,根据中位线定理得到FGCD,AECD,进而可得到AF∥GE,再由线面平行的判定定理可证明AF∥平面PCE,得证. (2)根据PA=AD=2可得到AF⊥PD,再由线面垂直的性质定理可得到PA⊥CD,然后由AD⊥CD结合线面垂直的判定定理得到CD⊥平面PAD,同样得到GE⊥平面PCD,再由面面垂直的判定定理可得证. (3)先由(2)可得知EG为四面体PEFC的高,进而求出S△PCF,根据棱锥的体积公式可得到答案. 【解析】 (1)证明:设G为PC的中点,连接FG,EG, ∵F为PD的中点,E为AB的中点, ∴FGCD,AECD ∴FGAE,∴AF∥GE ∵GE⊂平面PEC, ∴AF∥平面PCE;   (2)证明:∵PA=AD=2,∴AF⊥PD 又∵PA⊥平面ABCD,CD⊂平面ABCD, ∴PA⊥CD,∵AD⊥CD,PA∩AD=A, ∴CD⊥平面PAD, ∵AF⊂平面PAD,∴AF⊥CD. ∵PD∩CD=D,∴AF⊥平面PCD, ∴GE⊥平面PCD, ∵GE⊂平面PEC, ∴平面PCE⊥平面PCD; (3)由(2)知,GE⊥平面PCD, 所以EG为四面体PEFC的高, 又GF∥CD,所以GF⊥PD, EG=AF=,GF=CD=, S△PCF=PD•GF=2. 得四面体PEFC的体积V=S△PCF•EG=.
复制答案
考点分析:
相关试题推荐
设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:manfen5.com 满分网
查看答案
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米.
(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

manfen5.com 满分网 查看答案
已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
在△ABC中,已知内角A、B、C所对的边分别为a、b、c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,B为锐角.
(1)求角B的大小;
(2)设b=2,求△ABC的面积S△ABC的最大值.
查看答案
函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1;③manfen5.com 满分网,则manfen5.com 满分网的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.