满分5 > 高中数学试题 >

已知函数f(x)=+x+(a-1)lnx+15a,其中a<0,且a≠1 (Ⅰ)讨...

已知函数f(x)=manfen5.com 满分网+x+(a-1)lnx+15a,其中a<0,且a≠1
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设函数g(x)=manfen5.com 满分网 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.
(1)先求出函数的定义域,然后求出f′(x)=0得到函数的稳定点,讨论a的大小得到导函数的大小即可得到函数的单调区间; (2)存在a,令h(x))=(-2x3+3ax2+6ax-4a2-6a)ex(x∈R),求出导函数,然后再令m(x)=-2x3+3(a-2)x2+12ax-4a2(x∈R),讨论g(x)在[a,-a]上为减函数,当且仅当f(x)在[1,-a]上为减函数,h(x)在[a,1]上为减函数,且h(1)≥e•f(1)得到三个关于a范围的式子,求出解集即可得到a的范围. 【解析】 (1)f(x)的定义域为(0,+∞).f′(x)=-+1+=, ①若-1<a<0,则当0<x<-a时,f′(x)>0;当-a<x<1时,f′(x)<0;当x>1时,f′(x)>0.故f(x)分别在(0,-a),(1,+∞)上单调递增,在(-a,1)上单调递减. ②若a<-1,仿①可得f(x)分别在(0,1),(-a,+∞)上单调递增,在(1,-a)上单调递减; (2)存在a,使g(x)在[a,-a]上为减函数.事实上,设h(x)=(-2x3+3ax2+6ax-4a2-6a)ex(x∈R),则h′(x)=[-2x3+3(a-2)x2+12ax-4a2]ex 再设m(x)=-2x3+3(a-2)x2+12ax-4a2(x∈R), 则g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递减所以h′(a)≤0,由于ex>0, 因此g(x)在[a,-a]上为减函数,当且仅当f(x)在[1,-a]上为减函数,h(x)在[a,1]上为减函数,且h(1)≥e•f(1).由(1)知,当a≤-2①时,f(x)在[1,-a]上为减函数.又h(1)≥e•f(1)⇔4a2+13a+3≤0⇔-3≤a≤-② 不难知道,∀x∈[a,1],h′(x)≤0⇔∀x∈[a,1],m(x)≤0,因m′(x)=-6x2+6(a-2)x+12a=-6(x+2)(x-a),令m′(x)=0,则x=a,或x=-2.而a≤-2,于是 (p)当a<-2时,若a<x<-2,则m′(x)>0;若-2<x<1,则m′(x)<0.因而m(x)在(a,-2)上单调递增,在 (-2,1)上单调递减. (q)当a=-2时,m′(x)≤0,m(x)在(-2,1)上单调递减. 综合(p)(q)知,当a≤-2时,m(x)在[a,1]上的最大值为m(-2)=-4a2-12a-8.所以∀x∈[a,1],m(x)≤0 ⇔m(-2)≤0⇔-4a2-12a-8≤0⇔a≤-2③, 又对x∈[a,1],m(x)=0只有当a=-2时在x=-2取得,亦即h′(x)=0只有当a=-2时在x=-2取得.因此,当a≤-2时,h(x)在[a,1]上为减函数. 从而有①,②,③知,-3≤a≤-2 综上所述,存在a,使g(x)在[a,-a]上为减函数,且a的取值范围为[-3,-2].
复制答案
考点分析:
相关试题推荐
给出下面的数表序列:
manfen5.com 满分网
其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{bn}求和:manfen5.com 满分网(n∈N+
查看答案
为了考察冰川的融化状况,一支科考队在某冰川山上相距8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(如图).考察范围到A、B两点的距离之和不超过10Km的区域.
(1)求考察区域边界曲线的方程:
(2)如图所示,设线段P1P2(3)是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A恰好在冰川边界线上?

manfen5.com 满分网 查看答案
如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=______

manfen5.com 满分网 查看答案
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
高校相关人数抽取人数
A18x
B362
C54y
(1)求x,y;
(2)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率.
查看答案
已知函数f(x)=sin2x-2sin2x
(I)求函数f(x)的最小正周期.
(II)求函数f(x)的最大值及f(x)取最大值时x的集合.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.