满分5 > 高中数学试题 >

已知a为实数,. (1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增...

已知a为实数,manfen5.com 满分网
(1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增函数;
(2)当f(x)是奇函数时,若方程f-1(x)=log2(x+t)总有实数根,求实数t的取值范围.
(1)设x1>x2,代入函数解析式利用指数函数的单调性求得f(x1)-f(x2)>0,进而可知f(x1)>f(x2)推断出函数为增函数. (2)利用f(x)是奇函数时,可推断出f(0)=0求得a,进而求得f-1(x)的解析式,利用题设等式求得t的表达式,最后利用基本不等式求得t的最小值,进而求得t的范围. 【解析】 (1)设x1>x2, 则f(x1)-f(x2)=-+ ∴x1>x2, ∴> ∴< ∴f(x1)-f(x2)=-+>0 ∴f(x1)>f(x2) ∴函数f(x)在定义域上为增函数. (2)因为f(x)是R上的奇函数,所以, 即a=1. 由得 当且仅当,即时等号成立, 所以,t的取值范围是.
复制答案
考点分析:
相关试题推荐
直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,manfen5.com 满分网,E,F分别是BC,AA1的中点.
求(1)异面直线EF和A1B所成的角.
(2)三棱锥A-EFC的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(sinA,cosA),manfen5.com 满分网=(manfen5.com 满分网,-1),manfen5.com 满分网manfen5.com 满分网=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
查看答案
设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式manfen5.com 满分网的解集为( )
A.(-1,0)∪(1,+∞)
B.(-∞,-1)∪(0,1)
C.(-∞,-1)∪(1,+∞)
D.(-1,0)∪(0,1)
查看答案
下面给出四个命题:
①直线l与平面a内两直线都垂直,则l⊥a.
②经过直线a有且仅有一个平面垂直于直线b;
③过平面a外两点,有且只有一个平面与a垂直.
④直线l同时垂直于平面α、β,则α∥β.
其中正确的命题个数为( )
A.3
B.2
C.1
D.0
查看答案
已知a,b都是实数,那么“a2>b2”是“a>b”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.