满分5 > 高中数学试题 >

已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD...

已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

manfen5.com 满分网
求点B到面GEF的距离,就是求C到平面EFG距离的 ,直接作垂线求解即可. 【解析】 如图,连接EG、FG、EF、BD、AC、EF、BD分别交AC于H、O.因为ABCD是正方形,E、F分别为AB和AD的中点,故EF∥BD,H为AO的中点. BD不在平面EFG上.否则,平面EFG和平面ABCD重合,从而点G在平面的ABCD上,与题设矛盾. 由直线和平面平行的判定定理知BD∥平面EFG,所以BD和平面EFG的距离就是点B到平面EFG的距离. ∵BD⊥AC, ∴EF⊥HC. ∵GC⊥平面ABCD, ∴EF⊥GC, ∴EF⊥平面HCG. ∴平面EFG⊥平面HCG,HG是这两个垂直平面的交线. 作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,所以线段OK的长就是点B到平面EFG的距离. ∵正方形ABCD的边长为4,GC=2, ∴AC=4,HO=,HC=3. ∴在Rt△HCG中,HG=. 由于Rt△HKO和Rt△HCG有一个锐角是公共的,故Rt△HKO∽△HCG. ∴OK=. 即点B到平面EFG的距离为.
复制答案
考点分析:
相关试题推荐
已知复数z=1+i,求复数manfen5.com 满分网的模和辐角的主值.
查看答案
求函数y=sin2x+2sinxcosx+3cos2x的最小值,并写出使函数y取最小值的x的集合.
查看答案
空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=a,那么这个球面的面积是     查看答案
(ax+1)7的展开式中,x3的系数是x2的系数与x4的系数的等差中项.若实数a>1,那么a=    查看答案
已知正三棱台上底面边长为2,下底面边长为4,且侧棱与底面所成的角是45°,那么这个正三棱台的体积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.