满分5 > 高中数学试题 >

命题“若x2<1,则-1<x<1”的逆否命题是( ) A.若x2≥1,则x≥1或...

命题“若x2<1,则-1<x<1”的逆否命题是( )
A.若x2≥1,则x≥1或x≤-1
B.若-1<x<1,则x2<1
C.若x>1或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定. 【解析】 原命题的条件是““若x2<1”,结论为“-1<x<1”, 则其逆否命题是:若x≥1或x≤-1,则x2≥1. 故选D.
复制答案
考点分析:
相关试题推荐
下列命题是真命题的为( )
A.若manfen5.com 满分网,则x=y
B.若x2=1,则x=1
C.若x=y,则manfen5.com 满分网
D.若x<y,则x2<y2
查看答案
已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)是R上的单调减函数;
(2)试证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.
查看答案
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0、
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.
查看答案
已知函数f(x),g(x)在R上有定义,对任意的x,y∈R有f(x-y)=f(x)g(y)-g(x)•f(y),且f(1)≠0,则f(x)的奇偶性是     查看答案
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a、b,有f(a-b)=f(a)-b(2a-b+1),则f(x)的解析式为     查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.