满分5 > 高中数学试题 >

已知p:关于x的不等式x2+2ax-a>0的解集是R,q:-1<a<0,则p是q...

已知p:关于x的不等式x2+2ax-a>0的解集是R,q:-1<a<0,则p是q的( )
A.充分非必要条件
B.必要非充分条件
C.充分必要条件
D.既非充分又非必要条件
本题考查的知识点是必要条件、充分条件与充要条件的判断,由关于x的不等式x2+2ax-a>0的解集是R,我们易得对应方的判别式△小于0,由此可构造一个关于a的不等式,解不等式即可得到a的取值范围,与命题q中的a的范围比较后,结合“谁小谁充分,谁大谁必要”的原则,即可得到答案. 【解析】 依题意得△=4a2+4a<0,解得-1<a<0, 即p:-1<a<0, 又因为q:-1<a<0, 所以p是q的充分必要条件. 故选C
复制答案
考点分析:
相关试题推荐
命题“若x2<1,则-1<x<1”的逆否命题是( )
A.若x2≥1,则x≥1或x≤-1
B.若-1<x<1,则x2<1
C.若x>1或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
查看答案
下列命题是真命题的为( )
A.若manfen5.com 满分网,则x=y
B.若x2=1,则x=1
C.若x=y,则manfen5.com 满分网
D.若x<y,则x2<y2
查看答案
已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)是R上的单调减函数;
(2)试证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.
查看答案
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0、
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.
查看答案
已知函数f(x),g(x)在R上有定义,对任意的x,y∈R有f(x-y)=f(x)g(y)-g(x)•f(y),且f(1)≠0,则f(x)的奇偶性是     查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.