(1)要证明数列{an}为等差数列.我们可以根据二次函数顶点的坐标公式,求出其顶点纵坐标的表达式,再根据判断等差数列的方法进行判断;
(2)由于f(x)的图象的顶点到x轴的距离等于顶点纵坐标的绝对值,结合(1)的结论,我们易得{bn}从第二项开始是一个等差数列,根据等差数列前n项和公式,易得结论.
(1)证明:∵f(x)=x2-2(n+1)x+n2+5n-7(n∈N*),
f(x)的图象的顶点的纵坐标为=3n-8
即an=3n-8(n∈N*),
故{an}为一个以-5为首项,以3为公差的等差数列
(2)【解析】
由(1)及f(x)的图象的顶点到x轴的距离构成{bn},
则bn=|an|=|3n-8|
当n=1或n=2时3n-8<0,bn=|3n-8|=8-3n b1=5 b2=2
n≥3时3n-8>0 bn=|3n-8|=3n-8
Sn=b1+b2+b3+…+bn
=5+2+(3×3-8)+(3×4-8)…+(3n-8)
=7+3×(3+4+5+…+n)-8(n-2)
=7+-8(n-2)
=7+
=7+.
∴Sn=7+.