(I)由题意可得an+1=2an,即数列an为等比数列,代入等比数列的通项可求an;由bn+2-2bn+1+bn=0⇒bn+2-bn+1=bn+1-bn,从而可得数列bn为等差数列,结合题中所给条件可求公差d,首项b1,进一步可求数列的通项.
(II)由(I)可知数列anbn分别为等差、等比数列,对数列cn求和用错位相减.
【解析】
(Ⅰ)点(an,an+1)在直线y=2x上,
∴,数列{an}为等比数列,
又a1=2,∴an=2n.
∵bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn═b2-b1
即数列{bn}为等差数列,∵b1=11,S9=153,设首项为b1,公差为d.
b1+2d=1,解得b1=5,d=3,∴bn=3n+2
(Ⅱ)cn=bn•an=(3n+2)•2n∴Tn=5•2+8•22++(3n+2)•2n①
2Tn=5•22+8•23++(3n+2)•2n+1②
①-②得:-Tn=5•2+3•22++3•2n-(3n+2)•2n+1
∴Tn=(3n-1)•2n+1+2