满分5 > 高中数学试题 >

在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入...

在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.
(Ⅰ)求该选手进入第三轮才被淘汰即第一、二轮均通过,而第三轮未通过,利用独立事件的概率求解即可. (Ⅱ)求该选手至多进入第三轮考核分为三类,第一轮被淘汰、第二轮被淘汰、第三轮被淘汰,此三类事件互斥,分别求概率取和即可. (Ⅲ)X的所有可能取值为1,2,3,4,分别求概率即可. 【解析】 设事件Ai(i=1,2,3,4)表示“该选手能正确回答第i轮问题”, 由已知,,,, (Ⅰ)设事件B表示“该选手进入第三轮被淘汰”, 则=. (Ⅱ)设事件C表示“该选手至多进入第三轮考核”, 则=. (Ⅲ)X的可能取值为1,2,3,4.,,,, 所以,X的分布列为 .
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角Q-BD-P为45°.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ)manfen5.com 满分网的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x,2)和(x+2π,-2).
(1)求f(x)的解析式及x的值;
(2)若锐角θ满足manfen5.com 满分网,求f(4θ)的值.
查看答案
在计算“manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网(n∈N)”时,某同学学到了如下一种方法:
先改写第k项:manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网
由此得manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网
相加,得manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网=1-manfen5.com 满分网=manfen5.com 满分网
类比上述方法,请你计算“manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网(n∈N)”,其结果为    查看答案
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是     查看答案
已知直线l的参数方程为manfen5.com 满分网(参数t∈R),圆C的参数方程为manfen5.com 满分网(参数θ∈[0,2π]),则直线l被圆C所截得的弦长为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.