满分5 > 高中数学试题 >

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点...

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
(1)由x+ky-3=0得,(x-3)+ky=0,所以F为(3,0).由题设知,由此可求出椭圆C的方程. (2)因为点P(m,n)在椭圆C上运动,所以+=1.从而圆心O到直线l的距离d===<1.由此可求出直线l被圆O截得的弦长的取值范围. 【解析】 (1)由x+ky-3=0得,(x-3)+ky=0, 所以直线过定点(3,0),即F为(3,0). 设椭圆C的方程为+=1(a>b>0), 则解得 故所求椭圆C的方程为+=1. (2)因为点P(m,n)在椭圆C上运动,所以+=1. 从而圆心O到直线l的距离 d===<1. 所以直线l与圆O恒相交. 又直线l被圆O截得的弦长 L=2=2=2,由于0≤m2≤25, 所以16≤m2+16≤25,则L∈[,], 即直线l被圆O截得的弦长的取值范围是[,].
复制答案
考点分析:
相关试题推荐
已知,椭圆C过点Amanfen5.com 满分网,两个焦点为(-1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
查看答案
已知直角坐标平面上一点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长等于圆C的半径与|MQ|的和,求动点M的轨迹方程.
查看答案
已知椭圆C1manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程.
查看答案
过抛物线y2=4x的焦点,且倾斜角为manfen5.com 满分网π的直线交抛物线于P、Q两点,O为坐标原点,则△OPQ的面积等于    查看答案
过双曲线manfen5.com 满分网(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.