满分5 > 高中数学试题 >

设函数,g(x)=2x2+4x+c. (1)试问函数f(x)能否在x=-1时取得...

设函数manfen5.com 满分网,g(x)=2x2+4x+c.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
(1)利用反证法:根据f(x)的解析式求出f(x)的导函数,假设x=-1时f(x)取得极值,则把x=-1代入导函数,导函数值为0得到a的值,把a的值代入导函数中得到导函数在R上为增函数,没有极值与在x=-1时f(x)取得极值矛盾,所以得到f(x)在x=-1时无极值; (2)把a=-1代入f(x)确定出f(x),然后令f(x)与g(x)相等,移项并合并得到c等于一个函数,设F(x)等于这个函数,G(x)等于c,求出F(x)的导函数,令导函数等于0求出x的值,利用x的值讨论导函数的正负得到F(x)的单调区间,进而得到F(x)的极大值和极小值,函数f(x)与g(x)的图象有两个公共点,则函数F(x)与G(x)有两个公共点,根据F(x)的极大值和极小值写出c的取值范围即可. 【解析】 (1)由题意f′(x)=x2-2ax-a, 假设在x=-1时f(x)取得极值,则有f′(-1)=1+2a-a=0,∴a=-1, 而此时,f′(x)=x2+2x+1=(x+1)2≥0,函数f(x)在R上为增函数,无极值. 这与f(x)在x=-1有极值矛盾,所以f(x)在x=-1处无极值; (2)令f(x)=g(x),则有x3-x2-3x-c=0,∴c=x3-x2-3x, 设F(x)=x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3. 列表如下: 由此可知:F(x)在(-3,-1)、(3,4)上是增函数,在(-1,3)上是减函数. 当x=-1时,F(x)取得极大值;当x=3时,F(x)取得极小值 F(-3)=F(3)=-9,而. 如果函数f(x)与g(x)的图象有两个公共点,则函数F(x)与G(x)有两个公共点, 所以或c=-9.
复制答案
考点分析:
相关试题推荐
已知{an}是递增的等差数列,满足a2•a4=3,a1+a5=4.
(1) 求数列{an}的通项公式和前n项和公式;
(2) 设数列{bn}对n∈N*均有manfen5.com 满分网成立,求数列{bn}的通项公式.
查看答案
如图,在正方体ABCD-A1B1C1D1中,M、N、P分别为所在边的中点,O为面对角线A1C1的中点.
(1)求证:面MNP∥面A1C1B;
(2)求证:MO⊥A1C1

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案
已知向量manfen5.com 满分网=(2,1),manfen5.com 满分网=(x,y).
(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量manfen5.com 满分网manfen5.com 满分网的概率;
(2)若x∈[-1,2],y∈[-1,1],求向量manfen5.com 满分网manfen5.com 满分网的夹角是钝角的概率.
查看答案
已知manfen5.com 满分网manfen5.com 满分网<θ<π.(1) 求tanθ;(2) 求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.