满分5 > 高中数学试题 >

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA...

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2manfen5.com 满分网,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的大小.

manfen5.com 满分网
(Ⅰ)要证BD⊥平面PAC,只需证明BD垂直平面PAC内的两条相交直线PA,AC即可. (Ⅱ)过E作EF⊥PC,垂足为F,连接DF,说明∠EFD为二面角A-PC-D的平面角,推出Rt△EFC∽Rt△PAC,通过解Rt△EFD,求二面角A-PC-D的大小. 证明:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD.∴BD⊥PA. 又,.∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC. 又PA∩AC=A.∴BD⊥平面PAC (Ⅱ)过E作EF⊥PC,垂足为F,连接DF. ∵DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂线定理知PC⊥DF,∴∠EFD为二面角A-PC-D的平面角. 又∠DAC=90°-∠BAC=30°, ∴DE=ADsinDAC=1,, 又,∴,PC=8. 由Rt△EFC∽Rt△PAC得. 在Rt△EFD中,,∴. ∴二面角A-PC-D的大小为.
复制答案
考点分析:
相关试题推荐
设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网=(a+c,b),manfen5.com 满分网=(a-c,b-a),且manfen5.com 满分网,其中A,B,C是△ABC的内角,a,b,c分别是角A,B,C的对边.
(1)求角C的大小;
(2)求sinA+sinB的取值范围.
查看答案
椭圆manfen5.com 满分网的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M若MF1垂直于x轴,则椭圆的离心率为    查看答案
设变量x,y满足约束条件manfen5.com 满分网,则目标函数z=5x+y的最大值为    查看答案
在等腰直角三角形ABC中,D是斜边BC的中点,如果AB的长为2,则manfen5.com 满分网的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.