满分5 > 高中数学试题 >

已知函数R),g(x)=lnx. (1)求函数F(x)=f(x)+g(x)的单调...

已知函数manfen5.com 满分网R),g(x)=lnx.
(1)求函数F(x)=f(x)+g(x)的单调区间;
(2)若关于x的方程manfen5.com 满分网(e为自然对数的底数)只有一个实数根,求a的值.
(1)先求出求函数F(x)=f(x)+g(x)的导函数,分情况求出导数为0的根进而求出函数的单调区间(注意是在定义域内求单调区间); (2)先把问题转化为只有一个实数根;再利用导函数分别求出等号两端的极值,在下面画出草图,结合草图即可求出结论. (1)【解析】 函数的定义域为(0,+∞). ∴=. ①当△=1+4a≤0,即时,得x2+x-a≥0,则F′(x)≥0. ∴函数F(x)在(0,+∞)上单调递增.(2分) ②当△=1+4a>0,即时,令F′(x)=0,得x2+x-a=0, 解得. (ⅰ)若,则. ∵x∈(0,+∞),∴F′(x)>0, ∴函数F(x)在(0,+∞)上单调递增.(4分) (ⅱ)若a>0,则时,F′(x)<0;时,F′(x)>0, ∴函数F(x)在区间上单调递减,在区间上单调递增. 综上所述,当a≤0时,函数F(x)的单调递增区间为(0,+∞); 当a>0时,函数F(x)的单调递减区间为, 单调递增区间为.(8分) (2)【解析】 由,得,化为. 令,则. 令h′(x)=0,得x=e. 当0<x<e时,h′(x)>0;当x>e时,h′(x)<0. ∴函数h(x)在区间(0,e)上单调递增,在区间(e,+∞)上单调递减. ∴当x=e时,函数h(x)取得最大值,其值为.(10分) 而函数m(x)=x2-2ex+a=(x-e)2+a-e2, 当x=e时,函数m(x)取得最小值,其值为m(e)=a-e2.(12分) ∴当,即时,方程只有一个根.(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网.直线x=t(t>0)与曲线E交于
不同的两点M,N,以线段MN为直径作圆C,圆心为C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.
(1)求证:AM⊥PD;
(2)求直线CD与平面ACM所成的角的余弦值.

manfen5.com 满分网 查看答案
某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.
(1) 若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?
(2) 若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求Eξ的值.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c.已知向量manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=-1,
(Ⅰ) 求cosA的值;
(Ⅱ) 若manfen5.com 满分网,b=2,求c的值.
查看答案
(坐标系与参数方程选讲选做题)已知直线l的参数方程为:manfen5.com 满分网(t为参数),圆C的极坐标方程为manfen5.com 满分网,则直线l与圆C的位置关系为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.