满分5 > 高中数学试题 >

如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面A...

如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE;
(2)求证:AE⊥BE.

manfen5.com 满分网
(1)先取DE的中点P,利用N,P为中点,可以推出PN∥DC,且PN=DC,再利用四边形ABCD是矩形,点M为线段AB的中点,可以推出 AM∥DC,且AM=DC,故有PN∥AM,且PN=AM,⇒四边形AMNP是平行四边形,⇒MN∥AP即可证:MN∥平面DAE; (2)先利用BC⊥平面ABE⇒AE⊥BC,再利用BF⊥平面ACE⇒AE⊥BF,可以证得AE⊥平面BCE,进而可证AE⊥BE. 证明:(1)取DE的中点P,连接PA,PN, 因为点N为线段CE的中点, 所以PN∥DC,且PN=DC, 又四边形ABCD是矩形,点M为线段AB的中点, 所以AM∥DC,且AM=DC, 所以PN∥AM,且PN=AM, 故四边形AMNP是平行四边形, 所以MN∥AP. 而AP⊂平面DAE,MN⊄平面DAE, 所以MN∥平面DAE. (2)因为BC⊥平面ABE,AE⊂平面ABE, 所以AE⊥BC, 又BF⊥平面ACE,AE⊂平面ACE, 所以AE⊥BF, 又BF∩BC=B, 所以AE⊥平面BCE. 又BE⊂平面BCE, 所以AE⊥BE.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?
查看答案
manfen5.com 满分网如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.
查看答案
已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:
①若m∥α,则m平行于α内的无数条直线;
②若α∥β,m⊂α,n⊂β,则m∥n;
③若m⊥α,n⊥β,m∥n,则α∥β;
④若α∥β,m⊂α,则m∥β;
⑤若α⊥β,α∩β=m,n经过α内的一点,n⊥m,则n⊥β.
上面命题中,真命题的序号是     (写出所有真命题的序号). 查看答案
manfen5.com 满分网如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=manfen5.com 满分网,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=    查看答案
在△ABC中,AB=5,AC=7,∠A=60°,G为重心,过G的平面α与BC平行,AB∩α=M,AC∩α=N,则MN=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.