满分5 > 高中数学试题 >

函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f=f...

函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
(1)赋值,令x1=x2=1,有f(1×1)=f(1)+f(1),由此可解得f(1)的值; (2)方法同(1)赋值求出f(-1)=0,再令x1=-1,x2=x,有f(-x)=f(-1)+f(x)构造出f(-x)与f(x)的方程研究其间的关系.得出奇偶性,解答本题时注意做题格式,先判断后证明; (3)由题设条件f(4)=1与函数的恒等式,将f(3x+1)+f(2x-6)≤3转化为f[(3x+1)(2x-6)]≤f(64),再由f(x)在(0,+∞)上是增函数与f(x)是偶函数的性质将此抽象不等式转化为一元二次不等式,求解x的范围. (1)【解析】 令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0. (2)证明:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1).解得f(-1)=0. 令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数. (3)【解析】 f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3. ∴f(3x+1)+f(2x-6)≤3即f[(3x+1)(2x-6)]≤f(64).(*) ∵f(x)在(0,+∞)上是增函数, ∴(*)等价于不等式组 或 或或 ∴3<x≤5或-≤x<-或-<x<3. ∴x的取值范围为{x|-≤x<-或-<x<3或3<x≤5}.
复制答案
考点分析:
相关试题推荐
已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.
查看答案
manfen5.com 满分网如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB边上的中线CM所在直线的一般方程;
(Ⅱ)求△ABC的面积.
查看答案
集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},当 A∩B=∅时,求m的取值范围.
查看答案
下列条件中,能判断平面与平面平行的条件可以是    (写出所有正确条件的序号)
①平面α内有无数条直线与平面β平行
②平面α内的任何一条直线都与平面β平行
③直线a⊂α,直线b⊂β,且a∥β,b∥α
④a⊥α,b⊥β,a∥b. 查看答案
函数y=log2(3x-2)的定义域是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.