满分5 > 高中数学试题 >

已知⊙O1与⊙O2的极坐标方程分别是ρ=2cosθ和ρ=2asinθ(a是非零常...

已知⊙O1与⊙O2的极坐标方程分别是ρ=2cosθ和ρ=2asinθ(a是非零常数),
(1)将两圆的极坐标方程化为直角坐标方程;
(2)若两圆的圆心距为manfen5.com 满分网,求a的值.
(1)先将原极坐标方程两边同乘以ρ后,化成直角坐标方程即可. (2)将两圆化成直角坐标方程后,利用圆心的距离列方程求解参数a即可. 【解析】 (1)由ρ=2cosθ,得ρcosθ, 所以O1的直角坐标方程为x2+y2=2x, 即(x-1)2+y2=1, 由ρ=2asinθ,得ρ2=2aρsinθ, 所以O2的直角坐标方程为x2+y2=2ay, 即x2+(y-a)2=a2, (2)O1与O2的圆心之间的距离为,解得a=±2.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网展开式中前三项系数成等差数列,求:
(1)展开式中含x的一次幂的项;
(2)展开式中所有x的有理项.
查看答案
已知函数manfen5.com 满分网(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在manfen5.com 满分网为增函数,manfen5.com 满分网为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.
查看答案
数列{an}满足:an+1=3an-3an2,n=1,2,3,…,
(Ⅰ)若数列{an}为常数列,求a1的值;
(Ⅱ)若manfen5.com 满分网,求证:manfen5.com 满分网
(Ⅲ)在(Ⅱ)的条件下,求证:数列{a2n}单调递减.
查看答案
已知:以点manfen5.com 满分网为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点,
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
查看答案
某公园准备建一个摩天轮,摩天轮的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为manfen5.com 满分网元.假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y元.
(1)试写出y关于x的函数关系式,并写出定义域;
(2)当k=100米时,试确定座位的个数,使得总造价最低?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.