满分5 > 高中数学试题 >

设函数f(x)=(1+x)2-2ln(1+x). (Ⅰ)求f (x)的单调区间;...

设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当manfen5.com 满分网时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.
(Ⅰ)已知f(x)=(1+x)2-2ln(1+x)求出函数的导数f′(x),然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求解; (Ⅱ)由题意当时,不等式f (x)<m恒成立,只要求出f(x)的最大值小于m就可以了,从而求出实数m的取值范围; (Ⅲ)已知方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,整理移项得方程g(x)=x-a+1-2ln(1+x)=0在区间[0,2]上恰好有两个相异的实根,利用函数的增减性得根,于是有,从而求出实数a的取值范围. 【解析】 (Ⅰ)函数的定义域为(-1,+∞).(1分) ∵, 由f′(x)>0,得x>0;由f′(x)<0,得-1<x<0.(3分) ∴f(x)的递增区间是(0,+∞),递减区间是(-1,0).(4分) (Ⅱ)∵由,得x=0,x=-2(舍去) 由(Ⅰ)知f(x)在上递减,在[0,e-1]上递增. 高三数学(理科)答案第3页(共6页) 又,f(e-1)=e2-2,且. ∴当时,f(x)的最大值为e2-2. 故当m>e2-2时,不等式f(x)<m恒成立.(9分) (Ⅲ)方程f(x)=x2+x+a,x-a+1-2ln(1+x)=0. 记g(x)=x-a+1-2ln(1+x), ∵, 由g′(x)>0,得x>1或x<-1(舍去).由g′(x)<0,得-1<x<1. ∴g(x)在[0,1]上递减,在[1,2]上递增. 为使方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根, 只须g(x)=0在[0,1]和(1,2]上各有一个实数根,于是有 ∵2-2ln2<3-2ln3, ∴实数a的取值范围是2-2ln2<a≤3-2ln3.(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)过点(1,manfen5.com 满分网),且长轴长等于4.
(I)求椭圆C的方程;
(II)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若manfen5.com 满分网manfen5.com 满分网=-manfen5.com 满分网,求k的值.
查看答案
manfen5.com 满分网三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.
(Ⅰ)求证:MN∥平面BCC1B1
(Ⅱ)求证:MN⊥平面A1B1C.
查看答案
已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(I)求数列{an}的通项公式;
(II)设Tn为数列{manfen5.com 满分网}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.
查看答案
某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动.
(1)求从数学兴趣小组、英语兴趣小组各抽取的人数;
(2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率;
(3)记ξ表示抽取的3名学生中男学生数,求ξ的分布列及数学期望.
查看答案
已知manfen5.com 满分网=(sinx,cosx),manfen5.com 满分网=(cosx,cosx),f(x)=manfen5.com 满分网
(I)求f(x)的最小正周期和单调递增区间;
(II)在△ABC中,角A满足f(A)=manfen5.com 满分网,求角A.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.