设动圆P的半径为r,然后根据动圆与圆M1:(x+4)2+y2=25,⊙M2:,(x-4)2+y2=1都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决.
【解析】
设动圆的圆心为P,半径为r,
而圆(x+4)2+y2=25的圆心为O(-4,0),半径为5;
圆(x-4)2+y2=1的圆心为F(4,0),半径为1.
依题意得|PM1|=5+r,|PM2|=1+r,
则|PM1|-|PM2|=(5+r)-(1+r)=4<|M1M2|,
所以点P的轨迹是双曲线的右支.
且:a=2,c=4,b2=12
其方程是:
.