满分5 > 高中数学试题 >

设集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},则M∩N=( ...

设集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},则M∩N=( )
A.{0,1}
B.{-1,0,1}
C.{0,1,2}
D.{-1,0,1,2}
由题意知集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},然后根据交集的定义和运算法则进行计算. 【解析】 ∵M={-2,-1,0,1},N={-1,0,1,2,3}, ∴M∩N={-1,0,1}, 故选B.
复制答案
考点分析:
相关试题推荐
若sinα<0且tanα>0,则α是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
查看答案
如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=manfen5.com 满分网,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有PE⊥AF;
(3)当BE为何值时,PA与平面PDE所成角的大小为45°?

manfen5.com 满分网 查看答案
正三棱柱ABC-A1B1C1的所有棱长均为2,P是侧棱AA1上任意一点.
(1)求正三棱柱ABC-A1B1C1的体积;
(2)判断直线B1P与平面ACC1A1是否垂直,请证明你的结论;
(3)当BC1⊥B1P时,求二面角C-B1P-C1的余弦值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.
(1)求EF与平面ABCD所成的角的余弦值;
(2)求二面角F-DE-C的余弦值.
查看答案
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.
(1)求证:EF⊥CD;
(2)求DB与平面DEF所成角的正弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.