满分5 > 高中数学试题 >

已知函数f(x)=x3-x (1)求曲线y=f(x)在点M(t,f(t))处的切...

已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(t,f(t))处的切线方程
(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a)
(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可; (2)设切线过点(a,b),则存在t使b=(3t2-1)a-2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3-3at2+a+b=0有三个相异的实数根.记g(t)=2t3-3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证. 【解析】 (1)求函数f(x)的导函数;f'(x)=3x2-1. 曲线y=f(x)在点M(t,f(t))处的切线方程为:y-f(t)=f'(t)(x-t),即y=(3t2-1)x-2t3; (2)如果有一条切线过点(a,b),则存在t,使b=(3t2-1)a-2t3. 于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a+b=0有三个相异的实数根. 记g(t)=2t3-3at2+a+b,则g'(t)=6t2-6at=6t(t-a). 当t变化时,g(t),g'(t)变化情况如下表: 由g(t)的单调性,当极大值a+b<0或极小值b-f(a)>0时,方程g(t)=0最多有一个实数根; 当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根; 当b-f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根. 综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则 即-a<b<f(a).
复制答案
考点分析:
相关试题推荐
点P是双曲线manfen5.com 满分网的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,
(1)求双曲线的渐近线方程;
(2)求|PM|-|PN|的最大值.
查看答案
设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足manfen5.com 满分网
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案
平面向量manfen5.com 满分网,若存在不同时为0的实数k和t,使manfen5.com 满分网manfen5.com 满分网,试求函数关系式k=f(t)
查看答案
已知向量manfen5.com 满分网=(sinθ,cosθ-2sinθ),manfen5.com 满分网=(1,2).
(1)若manfen5.com 满分网,求tanθ的值;
(2)若manfen5.com 满分网,求θ的值.
查看答案
将A、B枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两枚骰子点数之和是3的倍数的概率为多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.