满分5 > 高中数学试题 >

如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,...

manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
(Ⅰ)取CE中点P,连接FP、BP,欲证AF∥平面BCE,根据直线与平面平行的判定定理可知只需证AF与平面平面BCE内一直线平行,而AF∥BP,AF⊂平面BCE,BP⊂平面BCE,满足定理条件; (Ⅱ)欲证平面BCE⊥平面CDE,根据面面垂直的判定定理可知在平面BCE内一直线与平面CDE垂直,而根据题意可得BP⊥平面CDE,BP⊂平面BCE,满足定理条件. 证明:(Ⅰ)取CE中点P,连接FP、BP, ∵F为CD的中点, ∴FP∥DE,且FP=. 又AB∥DE,且AB=. ∴AB∥FP,且AB=FP, ∴ABPF为平行四边形,∴AF∥BP.(4分) 又∵AF⊄平面BCE,BP⊂平面BCE, ∴AF∥平面BCE(6分) (Ⅱ)∵△ACD为正三角形,∴AF⊥CD ∵AB⊥平面ACD,DE∥AB ∴DE⊥平面ACD又AF⊂平面ACD ∴DE⊥AF 又AF⊥CD,CD∩DE=D ∴AF⊥平面CDE(10分) 又BP∥AF∴BP⊥平面CDE 又∵BP⊂平面BCE ∴平面BCE⊥平面CDE(12分)
复制答案
考点分析:
相关试题推荐
已知A,B是△ABC的两个内角,manfen5.com 满分网=manfen5.com 满分网cosmanfen5.com 满分网manfen5.com 满分网+sinmanfen5.com 满分网manfen5.com 满分网(其中manfen5.com 满分网manfen5.com 满分网是互相垂直的单位向量),若|manfen5.com 满分网|=manfen5.com 满分网
(1)试问tanA•tanB是否为定值,若是定值,请求出,否则说明理由;
(2)求tanC的最大值,并判断此时三角形的形状.
查看答案
函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],那么y=f(x)叫做闭函数,现有f(x)=manfen5.com 满分网+k是闭函数,那么k的取值范围是    查看答案
已知圆的方程为x2+y2-6x-8y=0;a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11是等差数列,则数列a1,a2,…,a11的公差的最大值为    查看答案
已知f(x)=manfen5.com 满分网,f(3+2sinθ)<m2+3m-2对一切θ∈R恒成立,则实数m的取值范围为    查看答案
manfen5.com 满分网函数f(x)=manfen5.com 满分网的图象如图所示,则a+b+c=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.