满分5 > 高中数学试题 >

已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:有一个公共点...

manfen5.com 满分网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:manfen5.com 满分网有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求manfen5.com 满分网的取值范围.
(1)先利用点A在圆上求出m,再利用直线PF1与圆C相切求出直线PF1与的方程以及c,再利用点A在椭圆上求出2a,即可求出椭圆E的方程; (2)先把用点Q的坐标表示出来,再利用Q为椭圆E上的一个动点以及基本不等式即可求出的取值范围. 【解析】 (1)点A代入圆C方程,得(3-m)2+1=5. ∵m<3, ∴m=1. 设直线PF1的斜率为k, 则PF1:y=k(x-4)+4,即kx-y-4k+4=0. ∵直线PF1与圆C相切,圆C:(x-1)2+y2=5, ∴, 解得. 当k=时,直线PF1与x轴的交点横坐标为,不合题意,舍去. 当k=时,直线PF1与x轴的交点横坐标为-4, ∴c=4. ∴F1(-4,0),F2(4,0). 故2a=AF1+AF2=,,a2=18,b2=2. 椭圆E的方程为:. (2),设Q(x,y), ,. ∵,即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|, ∴-18≤6xy≤18. 则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36]. ∴x+3y的取值范围是[-6,6] ∴x+3y-6的范围只:[-12,0]. 即的取值范围是[-12,0].
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,数列manfen5.com 满分网是公比为2的等比数列.
(1)证明:数列{an}成等比数列的充要条件是a1=3;
(2)设bn=5n-(-1)nan(n∈N*).若bn<bn+1对n∈N*恒成立,求a1的取值范围.
查看答案
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
查看答案
已知A,B是△ABC的两个内角,manfen5.com 满分网=manfen5.com 满分网cosmanfen5.com 满分网manfen5.com 满分网+sinmanfen5.com 满分网manfen5.com 满分网(其中manfen5.com 满分网manfen5.com 满分网是互相垂直的单位向量),若|manfen5.com 满分网|=manfen5.com 满分网
(1)试问tanA•tanB是否为定值,若是定值,请求出,否则说明理由;
(2)求tanC的最大值,并判断此时三角形的形状.
查看答案
函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],那么y=f(x)叫做闭函数,现有f(x)=manfen5.com 满分网+k是闭函数,那么k的取值范围是    查看答案
已知圆的方程为x2+y2-6x-8y=0;a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11是等差数列,则数列a1,a2,…,a11的公差的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.