满分5 > 高中数学试题 >

已知函数f(x)=(x2-mx+m)•ex(m∈R). (Ⅰ)若函数f(x)存在...

已知函数f(x)=(x2-mx+m)•ex(m∈R).
(Ⅰ)若函数f(x)存在零点,求实数m的取值范围;
(Ⅱ)当m<0时,求函数f(x)的单调区间;并确定此时f(x)是否存在最小值,如果存在,求出最小值,如果不存在,请说明理由.
(1)因为ex>0,所以将f(x)有零点转化为g(x)=x2-mx+m二次函数有零点的问题,即判别式大于等于0,可求解. (2)对函数f(x)进行求导,令导函数等于0求出x的值,然后根据导函数的正负情况判断原函数的单调性可判断函数是否有最小值. 【解析】 (Ⅰ)设f(x)有零点,即函数g(x)=x2-mx+m有零点, 所以m2-4m≥0,解得m≥4或m≤0. (Ⅱ)f'(x)=(2x-m)•ex+(x2-mx+m)•ex=x(x-m+2)ex, 令f'(x)=0,得x=0或x=m-2, 因为m<0时,所以m-2<0, 当x∈(-∞,m-2)时,f'(x)>0,函数f(x)单调递增; 当x∈(m-2,0)时,f'(x)<0,函数f(x)单调递减; 当x∈(0,+∞)时,f'(x)>0,函数f(x)单调递增. 此时,f(x)存在最小值.f(x)的极小值为f(0)=m<0. 根据f(x)的单调性,f(x)在区间(m-2,+∞)上的最小值为m, 解f(x)=0,得f(x)的零点为和, 结合f(x)=(x2-mx+m)•ex, 可得在区间(-∞,x1)和(x2,+∞)上,f(x)>0 因为m<0,所以x1<0<x2, 并且 ==, 即x1>m-2, 综上,在区间(-∞,x1)和(x2,+∞)上,f(x)>0,f(x)在区间(m-2,+∞)上的最小值为m,m<0, 所以,当m<0时f(x)存在最小值,最小值为m.
复制答案
考点分析:
相关试题推荐
设向量manfen5.com 满分网=(0,2),manfen5.com 满分网=(1,0),过定点A(0,-2),以manfen5.com 满分网manfen5.com 满分网方向向量的直线与经过点B(0,2),以向量manfen5.com 满分网-2λmanfen5.com 满分网为方向向量的直线相交于点P,其中λ∈R,
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过E(1,0)的直线l与C交于两个不同点M、N,求manfen5.com 满分网manfen5.com 满分网的取值范围.
查看答案
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.
(Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网(n∈N*),试求{bn}的前n项和公式Tn
查看答案
一气球以V(m/s)的速度由地面上升,10分钟后由观察点P测得气球在P的正东方向S处,仰角为45°;再过10分钟后,测得气球在P的东偏北30°方向T处,其仰角为60°(如图,其中Q、R分别为气球在S、T处时的正投影).求风向和风速(风速用V表示).

manfen5.com 满分网 查看答案
直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为k阶格点函数.下列函数:
①f(x)=sinx;  ②f(x)=π(x-1)2+3;  ③manfen5.com 满分网;  ④f(x)=log0.6x.其中是一阶格点函数的有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.