满分5 > 高中数学试题 >

如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点...

manfen5.com 满分网如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:manfen5.com 满分网
(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题. (2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论. 证明:(1)连接AB,AC, ∵AD为⊙M的直径,∴∠ABD=90°, ∴AC为⊙O的直径,∴∠CEF=∠AGD, ∵∠DFG=∠CFE,∴∠ECF=∠GDF, ∵G为弧BD中点,∴∠DAG=∠GDF, ∵∠ECB=∠BAG,∴∠DAG=∠ECF, ∴△CEF∽△AGD, ∴, ∴AG•EF=CE•GD (2)由(1)知∠DAG=∠GDF, ∠G=∠G, ∴△DFG∽△AGD, ∴DG2=AG•GF, 由(1)知, ∴.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(x2-mx+m)•ex(m∈R).
(Ⅰ)若函数f(x)存在零点,求实数m的取值范围;
(Ⅱ)当m<0时,求函数f(x)的单调区间;并确定此时f(x)是否存在最小值,如果存在,求出最小值,如果不存在,请说明理由.
查看答案
设向量manfen5.com 满分网=(0,2),manfen5.com 满分网=(1,0),过定点A(0,-2),以manfen5.com 满分网manfen5.com 满分网方向向量的直线与经过点B(0,2),以向量manfen5.com 满分网-2λmanfen5.com 满分网为方向向量的直线相交于点P,其中λ∈R,
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过E(1,0)的直线l与C交于两个不同点M、N,求manfen5.com 满分网manfen5.com 满分网的取值范围.
查看答案
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.
(Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网(n∈N*),试求{bn}的前n项和公式Tn
查看答案
一气球以V(m/s)的速度由地面上升,10分钟后由观察点P测得气球在P的正东方向S处,仰角为45°;再过10分钟后,测得气球在P的东偏北30°方向T处,其仰角为60°(如图,其中Q、R分别为气球在S、T处时的正投影).求风向和风速(风速用V表示).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.