满分5 > 高中数学试题 >

三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB...

三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.
(1)求证:MN∥平面BCC1B1
(2)求证:MN⊥平面A1B1C.
(3)求三棱锥M-A1B1C的体积.

manfen5.com 满分网
(Ⅰ)连接BC1,AC1,通过M,N是AB,A1C的中点,利用MN∥BC1.证明MN∥平面BCC1B1. (Ⅱ)说明四边形BCC1B1是正方形,连接A1M,CM,通过△AMA1≌△AMC.说明MN⊥A1C然后证明MN⊥平面A1B1C. (Ⅲ)由(Ⅱ)知MN是三棱锥M-A1B1C的高.在直角△MNC中.求出.即可解得. (Ⅰ)证明:连接BC1,AC1,∵M,N是AB,A1C的中点∴MN∥BC1. 又∵MN不属于平面BCC1B1,∴MN∥平面BCC1B1. (Ⅱ)【解析】 ∵三棱柱ABC-A1B1C1中,侧棱与底面垂直, ∴四边形BCC1B1是正方形. ∴BC1⊥B1C.∴MN⊥B1C. 连接A1M,CM,△AMA1≌△BMC. ∴A1M=CM,又N是A1C的中点,∴MN⊥A1C. ∵B1C与A1C相交于点C, ∴MN⊥平面A1B1C. (Ⅲ)【解析】 由(Ⅱ)知MN是三棱锥M-A1B1C的高. 在直角△MNC中,,∴. 又..
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C所对的边分别为a,b,c,满足manfen5.com 满分网,且△ABC的面积为2.
(Ⅰ)求bc的值;
(Ⅱ)若b+c=6,求a的值.
查看答案
关于平面向量有下列四个命题:
①若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网=manfen5.com 满分网,;
②已知manfen5.com 满分网=(k,3),manfen5.com 满分网=(-2,6).若manfen5.com 满分网manfen5.com 满分网,则k=-1.
③非零向量manfen5.com 满分网manfen5.com 满分网,满足|manfen5.com 满分网|=|manfen5.com 满分网|=|manfen5.com 满分网-manfen5.com 满分网|,则manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网的夹角为30°.
④(manfen5.com 满分网+manfen5.com 满分网 )•(manfen5.com 满分网-manfen5.com 满分网 )=0.
其中正确的命题为     .(写出所有正确命题的序号) 查看答案
若数列{an}的前n项和为Sn,则manfen5.com 满分网若数列{bn}的前n项积为Tn,类比上述结果,则bn=    .此时,若Tn=n2(n∈N)*,则bn=    查看答案
定义在R上的函数满足f(0)=0,f(x)+f(1-x)=1,manfen5.com 满分网,且当0≤x1<x2≤1时,f(x1)≤f(x2),则manfen5.com 满分网=    查看答案
manfen5.com 满分网某程序框图如图所示,该程序运行后输出M,N的值分别为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.