满分5 > 高中数学试题 >

函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x (Ⅰ)求函数g...

函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
(Ⅰ)在函数y=f(x)的图象上任意一点Q(x,y),设关于原点的对称点为P(x,y),再由中点坐标公式,求得Q的坐标代入f(x)=x2+2x即可. (Ⅱ)将f(x)与g(x)的解析式代入转化为2x2-|x-1|≤0,再通过分类讨论去掉绝对值,转化为一元二次不等式求解. (Ⅲ)将f(x)与g(x)的解析式代入可得h(x)=-(1+λ)x2+2(1-λ)x+1,再用二次函数法研究其单调性. 【解析】 (Ⅰ)设函数y=f(x)的图象上任意一点Q(x,y)关于原点的对称点为P(x,y), 则即 ∵点Q(x,y)在函数y=f(x)的图象上 ∴-y=x2-2x,即y=-x2+2x,故g(x)=-x2+2x (Ⅱ)由g(x)≥f(x)-|x-1|,可得2x2-|x-1|≤0 当x≥1时,2x2-x+1≤0,此时不等式无解. 当x<1时,2x2+x-1≤0,解得. 因此,原不等式的解集为. (Ⅲ)h(x)=-(1+λ)x2+2(1-λ)x+1 ①当λ=-1时,h(x)=4x+1在[-1,1]上是增函数,∴λ=-1 ②当λ≠-1时,对称轴的方程为x=. ⅰ)当λ<-1时,,解得λ<-1. ⅱ)当λ>-1时,,解得-1<λ≤0.综上,λ≤0.
复制答案
考点分析:
相关试题推荐
已知抛物线W:y=ax2经过点A(2,1),过A作倾斜角互补的两条不同直线l1,l2
(Ⅰ)求抛物线W的方程及准线方程;
(Ⅱ)当直线l1与抛物线W相切时,求直线l2的方程
(Ⅲ)设直线l1,l2分别交抛物线W于B,C两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
查看答案
如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P-CD-B为45°.
(1)求证:AF∥平面PEC;
(2)求证:平面PEC⊥平面PCD;
(3)设AD=2,CD=2manfen5.com 满分网,求点A到平面PEC的距离.

manfen5.com 满分网 查看答案
如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.
(1)求证:平面PAC⊥平面PBC;
(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.

manfen5.com 满分网 查看答案
如图在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

manfen5.com 满分网 查看答案
如图,在正三棱柱ABC-A1B1C1中,AB=AA1,E是棱BB1的中点.
(1)求证:平面A1EC⊥平面AA1C1C;
(2)若我们把平面A1EC与平面A1B1C1所成的锐二面角为60°时的正三棱柱称为“黄金棱柱”,请判断此三棱柱是否为“黄金棱柱”,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.