(Ⅰ)求出椭圆的a,b,c,P是第一象限内该椭圆上的一点设为(x,y),利用,以及P在椭圆上,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l方程为y=kx+2,A(x1,y1),B(x2,y2),与椭圆联立,注意到交于不同的两点A、B,△>0且∠AOB为锐角(其中O为作标原点),就是利用韦达定理,代入化简,求直线l的斜率k的取值范围.
【解析】
(Ⅰ)易知a=2,b=1,.
∴,.设P(x,y)(x>0,y>0).
则,又,
联立,解得,.
(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).
联立
∴,
由△=(16k)2-4•(1+4k2)•12>016k2-3(1+4k2)>0,4k2-3>0,得.①
又∠AOB为锐角,
∴
又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4
∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4
=
=
=
∴.②
综①②可知,
∴k的取值范围是.