满分5 > 高中数学试题 >

已知函数f(x)=x2+alnx. (Ⅰ)当a=-2时,求函数f(x)的单调区间...

已知函数f(x)=x2+alnx.
(Ⅰ)当a=-2时,求函数f(x)的单调区间和极值;
(Ⅱ)若函数manfen5.com 满分网在[1,+∞)上是增函数,不等式manfen5.com 满分网在[1,+∞)上恒成立,求实数a的取值范围.
(I)先求出函数的定义域,把a代入到函数中并求出f′(x)=0时x的值,在定义域内讨论导函数的正负得到函数的单调区间及极值; (Ⅱ)把f(x)代入到g(x)中得到g(x)的解析式,求出其导函数大于0即函数单调,可设φ(x)=-2x2,求出其导函数在[1,+∞)上单调递减,求出φ(x)的最大值,列出不等数求出解集即为a的取值范围. 【解析】 (I)函数f(x)的定义域为(0,+∞) 当a=-2时, 当x变化时,f′(x),f(x)的变化情况如下: 由上表可知,函数f(x)的单调递减区间是(0,1); 单调递增区间是(1,+∞). 极小值是f(1)=1; (Ⅱ)由 又函数上单调增函数, 则g′(x)≥0在[1,+∞)上恒成立, 即不等式上恒成立 也即在[1,+∞)上恒成立 又在[1,+∞)为减函数, 所以φ(x)max=φ(1)=0. 所以a≥0.a的取值范围为[0,+∞).
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AB∥CD,AD=BC=2,对角线AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直线PA与底面ABCD所成的角为60°,M为PD上的一点.
(Ⅰ)证明:PD⊥AC;
(Ⅱ)求二面角A-PB-D的大小.

manfen5.com 满分网 查看答案
有红色和黑色两个盒子,红色盒中有6张卡片,其中一张标有数字0,两张标有数字1,三张标有数字2;黑色盒中有7张卡片,其中4张标有数字0,一张标有数字1,两张标有数字2.现从红色盒中任意取1张卡片(每张卡片被抽出的可能性相等),黑色盒中任意取2张卡片(每张卡片抽出的可能性相等),共取3张卡片.
(Ⅰ)求取出的3张卡片都标有数字0的概率;
(Ⅱ)求取出的3张卡片数字之积是4的概率;
(Ⅲ)记ξ为取出的3张卡片的数字之积,求ξ的概率分布及数学期望Eξ.
查看答案
已知A、B两点的坐标分别为manfen5.com 满分网
(Ⅰ)求|manfen5.com 满分网|的表达式;
(Ⅱ)若manfen5.com 满分网(O为坐标原点),求tanx的值;
(Ⅲ)若manfen5.com 满分网,求函数f(x)的最小值.
查看答案
已知P是双曲线manfen5.com 满分网的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:
①双曲线的一条准线被它的两条渐近线所截得的线段长度为manfen5.com 满分网
②若|PF1|=e|PF2|,则e的最大值为manfen5.com 满分网
③△PF1F2的内切圆的圆心横坐标为a;
其中正确命题的序号是    查看答案
实数x,y满足不等式组manfen5.com 满分网manfen5.com 满分网的范围    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.