满分5 > 高中数学试题 >

已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2c...

已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.
本题是一个至少性问题,可以利用反证法证明,其步骤为:①否定命题的结论,即假设“任何一条抛物线与x轴没有两个不同的交点”成立→②根据函数的性质可以得到三个函数对应方程的△≤0均成立→③利用不等式的性质,同向不等式求和→④得到的式子与实数的性质相矛盾→⑤故假设不成立,原结论成立. 【解析】 假设题设中的函数确定的三条抛物线都不与x有两个不同的交点 (即任何一条抛物线与x轴没有两个不同的交点), 由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b得△1=(2b)2-4ac≤0, △2=(2c)2-4ab≤0, △3=(2a)2-4bc≤0. 同向不等式求和得, 4b2+4c2+4a2-4ac-4ab-4bc≤0, ∴2a2+2b2+2c2-2ab-2bc-2ac≤0, ∴(a-b)2+(b-c)2+(c-a)2≤0, ∴a=b=c,这与题设a,b,c互不相等矛盾, 因此假设不成立,从而命题得证.
复制答案
考点分析:
相关试题推荐
已知非零向量manfen5.com 满分网,且manfen5.com 满分网,求证:manfen5.com 满分网
查看答案
已知x+y+z=1,求证manfen5.com 满分网
查看答案
用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形的是矩形,所以正方形的对角线相等;
(3)manfen5.com 满分网是有理数;
(4)y=sinx(x∈R)是周期函数.
查看答案
已知函数f(x)=-x2+2x
(1)证明函数f(x)在(-∞,1]上是增函数;
(2)当x∈[-5,-2]时,f(x)是增函数还是减函数?
查看答案
平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱锥为平行六面体的两个充要条件:
充要条件①:______;充要条件②:______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.