满分5 > 高中数学试题 >

已知函数f(x)=cosx-cos(x+) x∈R.若f(x)=.sin2x= ...

已知函数f(x)=cosx-cos(x+manfen5.com 满分网) x∈R.若f(x)=manfen5.com 满分网.sin2x=   
先利用诱导公式化简函数解析式,把函数解析式平方后,利用同角三角函数的基本关系和正弦的二倍角公式整理求得答案. 【解析】 f(x)=cosx-cos(x+)=cosx+sinx ∴f(x)•f(x)=cosx•cosx+2sinx cosx+sinx•sinx=1+sin2x= ∴sin2x=- 故答案为:-
复制答案
考点分析:
相关试题推荐
p:“manfen5.com 满分网”和q:“2x2-5x+3>0”,则¬p是q的     条件. 查看答案
已知函数manfen5.com 满分网,数列{an}满足an=f(an-1)(n≥2,n∈N+).
(Ⅰ)若manfen5.com 满分网,数列{bn}满足manfen5.com 满分网,求证:数列{bn}是等差数列;
(Ⅱ)若manfen5.com 满分网,数列{an}中是否存在最大项与最小项,若存在,求出最大项与最小项;若不存在,说明理由;
(Ⅲ)若1<a1<2,试证明:1<an+1<an<2.
查看答案
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3).
(Ⅰ)求椭圆C和直线l的方程;
(Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线x2-2mx+y2+4y+m2-4=0与D有公共点,试求实数m的最小值.
查看答案
如图,在Rt△AOB中,manfen5.com 满分网,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(I)求证:平面COD⊥平面AOB;
(II)当D为AB的中点时,求异面直线AO与CD所成角的余弦值大小;
(III)求CD与平面AOB所成角最大时的正切值大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.