满分5 > 高中数学试题 >

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“...

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.
(1)先有条件得{an}是三角形数列,再利用f(x)=kx,(k>1)是数列{an}的“保三角形函数”,得到kn+kn+1>kn+2,解得k的取值范围; (2)先利用条件求出数列{cn}的通项公式,再证明其满足“三角形”数列的定义即可; (3)[文科]利用条件得到g(cn)是单调递减函数以及lgcn-1+lgcn>lgcn-2得,解此不等式找到对应的范围即可得出结论. [理科]根据函数h(x)=-x2+2x,x∈[1,A]是数列1,1+d,1+2d(d>0)的“保三角形函数”,可以得到①1,1+d,1+2d(d>0)是三角形数列,所以1+1+d>1+2d,即o<d<1,②数列中的各项必须在定义域内,即1+2d≤A,③h(1),h(1+d),h(1+2d)是三角形数列;结论为在利用h(x)=-x2+2x,x∈[1,A]是单调递减函数,就可求出对应d的范围. 【解析】 (1)显然an=n+1,an+an+1>an+2对任意正整数都成立, 即{an}是三角形数列.(2分) 因为k>1,显然有f(an)<f(an+1)<f(an+2), 由f(an)+f(an+1)>f(an+2)得kn+kn+1>kn+2,解得k<. 所以当k∈(1,)时,f(x)=kx是数列{an}的“保三角形函数”.(5分) (2)由4Sn+1-3Sn=8040得4Sn-3Sn-1=8040,两式相减得4cn+1-3cn=0 所以,cn=2010, 经检验,此通项公式满足4Sn+1-3Sn=8040 (7分) 显然cn>cn+1>cn+2,因为cn+1+cn+2=2010+2010=•2010>cn, 所以{cn}是“三角形”数列.(10分) (3)[文科]因为g(cn)是单调递减函数,所以,由lgcn-1+lgcn>lgcn-2得 lg2010+(n-2)lg+lg2010+(n-1)lg>lg2010+(n-3)lg(14分) 化简得lg2010>nlg,解得n<26.4, 即数列{bn}最多有26项.(18分) (3)[理科]探究过程:函数h(x)=-x2+2x,x∈[1,A]是数列1,1+d,1+2d(d>0)的“保三角形函数”,必须满足三个条件: ①1,1+d,1+2d(d>0)是三角形数列,所以1+1+d>1+2d,即o<d<1. ②数列中的各项必须在定义域内,即1+2d≤A. ③h(1),h(1+d),h(1+2d)是三角形数列. 由于h(x)=-x2+2x,x∈[1,A]是单调递减函数,所以h(1+d)+h(1+2d)>h(1),解得0<d<.
复制答案
考点分析:
相关试题推荐
如果对于函数f(x)的定义域内任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”;
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤manfen5.com 满分网成立.
(3)设a、m为实常数,m>0.若f(x)=alnx是区间[m,+∞)上的“平缓函数”,试估计a的取值范围(用m表示,不必证明).
查看答案
给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②任意的锐角三角形ABC中,有sinA>cosB成立;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角.
其中真命题的序号是    (要求写出所有真命题的序号). 查看答案
现定义命题演算的合式公式(wff),规定为:
A、单个命题本身是一个合式公式;
B、如果A是合式公式,那么¬A是合式公式;
C、如果A和B是合式公式,那么(A∧B),(A∨B),(A→B),(A↔B)都是合式公式;
D、当且仅当能够有限次地运用A、B、C所得到的命题是合式公式.
说明:考生无需知道(A∧B),(A∨B),(A→B),(A↔B)所表示的具体含义.
下列公式是合式公式的是:   
①((¬P→Q)→(Q→P))②(Q→R∧S)③(RS→T)
④(P↔(R→S))⑤((P→(Q→R))→((P→Q)→(P→R)) 查看答案
已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有    查看答案
给出封闭函数的定义:若对于定义域D内的任意一个自变量x,都有函数值f(x)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=3x-1;②f2(x)=-manfen5.com 满分网x2-manfen5.com 满分网x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封闭的是    .(填序号即可) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.