满分5 > 高中数学试题 >

在△ABC中,a,b,c分别是角A、B、C的对边,=(b,2a-c),=(cos...

在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
(1)要求B角的大小,要先确定B的一个三角函数值,再确定B的取值范围 (2)要求三角函数的最值,要先将其转化为正弦型函数的形式,再根据正弦型函数的性质解答. 【解析】 (1)由m∥n,得bcosC=(2a-c)cosB, ∴bcosC+ccosB=2acosB. 由正弦定理,得sinBcosC+sinCcosB=2sinAcosB, ∴sin(B+C)=2sinAcosB. 又B+C=π-A, ∴sinA=2sinAcosB. 又sinA≠0,∴. 又B∈(0,π),∴. (2) 由已知,∴ω=2. 当 因此,当时,; 当,
复制答案
考点分析:
相关试题推荐
下列说法正确的是     .(写出所有正确说法的序号)
①若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;
②命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1<3x”;
③设x,y∈R.命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若manfen5.com 满分网 查看答案
在区间[1,4]上任取实数a,在区间[0,3]上任取实数b,使函数f(x)=ax2+x+b有两个相异零点的概率是     查看答案
在R上定义运算⊗:x⊗y=x(2-y),若不等式(x+m)⊗x<1对一切实数x恒成立,则实数m的取值范围是    查看答案
已知X~N(-1,σ2),若P(-3≤x≤-1)=0.4,则P(-3≤x≤1)=    查看答案
manfen5.com 满分网将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为( )
A.6种
B.12种
C.18种
D.24种
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.