满分5 > 高中数学试题 >

如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-,...

如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-manfen5.com 满分网,Cmanfen5.com 满分网,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使manfen5.com 满分网对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

manfen5.com 满分网
(1)由切线长定理得,从一点出发的切线长相等,得到A点到两个点B,C的距离之差是常数,根据双曲线的定义得A点的轨迹是双曲线,从而即可求出L的方程; (2)对于存在性问题,可先假设存在,设点Q(x,0),再设M(x1,y1),N(x2,y2),由条件得∠MQC=∠NQC,下面分类讨论:①当MN⊥x,②当MN不垂直x时,第一种情况比较简单,对于第二种情况,将直线的方程代入双曲线方程,消去y得到关于x的二次方程,结合根与系数的关系,利用斜率相等求得,从而说明存在点Q. 【解析】 (1)由题意|AD|=|AF|.|BD|=|BE|,|CE|=|CF|. ∴|AB|-|AC|=|BD|-|CF|=|BE|-|CE|=|BO|+|OE|-(|OC|-|OE|)=2|OE| I(1,t),E(1,0),|OE|=1,|AB|-|AC|=2 x2-y2=1(x>1) (2)设点Q(x,0),设M(x1,y1),N(x2,y2) ∵⇔⇔⇔∠MQC=∠NQC (6分) 于是:①当MN⊥x,点Q(x,0)在x上任何一点处,都能够使得: ∠MQC=∠NQC成立,(8分) ②当MN不垂直x时,设直线. 由得: 则: ∴ ∵,要使∠MQC=∠NQC成立, 只要tan∠MQC=tan∠NQC:⇒x2y1-xy1+x1y2-xy2=0 即= ∴⇒∴当时,能够使: 对任意的直线m成立.(15分)
复制答案
考点分析:
相关试题推荐
已知数列{an}中,manfen5.com 满分网在直线y=x上,其中n=1,2,3….
(Ⅰ)令bn=an-1-an-3,求证数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列manfen5.com 满分网为等差数列?若存在,试求出λ.若不存在,则说明理由.
查看答案
正方体ABCD-A1B1C1D1的棱长为2,O是AC与BD的交点,E为BB1的中点.
(Ⅰ)求证:直线B1D∥平面AEC;
(Ⅱ)求证:B1D⊥平面D1AC;
(Ⅲ)求三棱锥D-D1OC的体积.

manfen5.com 满分网 查看答案
在△ABC中,已知内角A、B、C所对的边分别为a、b、c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,B为锐角.
(1)求角B的大小;
(2)设b=2,求△ABC的面积S△ABC的最大值.
查看答案
设面积为S的平面四边形的第i条边的边长记为ai(i=1,2,3,4),P是该四边形内任意一点,P点到第i条边的距离记为hi,若manfen5.com 满分网,则manfen5.com 满分网.类比上述结论,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),Q是该三棱锥内的任意一点,Q点到第i个面的距离记为Hi,相应的正确命题是    查看答案
manfen5.com 满分网如右图所示的曲线是以锐角△ABC的顶点B、C为焦点,且经过点A的双曲线,若△ABC的内角的对边分别为a,b,c,且a=4,b=6,manfen5.com 满分网,则此双曲线的离心率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.