满分5 > 高中数学试题 >

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1...

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围.
(1)将点的坐标代入函数解析式得到一个方程;利用函数满足的等式得到函数的对称轴,据二次函数的对称轴公式列出方程求出m,n;求出f(x)的解析式;利用相关点法求出g(x)的解析式. (2)利用函数在区间上单调,则导函数大于等于0恒成立,列出恒成立的不等式,分离参数,转化成求函数的最值 【解析】 (1)由题意知:1+m+n=3对称轴为x=-1故 解得m=2,n=0, ∴f(x)=x2+2x, 设函数y=f(x)图象上的任意一点Q(x,y)关于原点的对称点为P(x,y), 则x=-x,y=-y,因为点Q(x,y)在y=f(x)的图象上, ∴-y=x2-2x, ∴y=-x2+x, ∴g(x)=-x2+2x. (2)F(x)=-x2+2x-λ(x2+2x)=-(1+λ)x2+2(1-λ)x ∵F(x)在(-1,1]上是增函且连续,F'(x)=-2(1+λ)x+2(1-λ)≥0 即在({-1,1}]上恒成立, 由在(-1,1]上为减函数, 当x=1时取最小值0,故λ≤0,所求λ的取值范围是(-∞,0],
复制答案
考点分析:
相关试题推荐
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次,每日来回的次数是车头每次拖挂车厢个数的一次函数,每节车厢能载乘客110人.问这列火车每天来回多少次,每次应拖挂多少车厢才能使运营人数最多?并求出每天最多运营人数.
查看答案
已知函数manfen5.com 满分网,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为manfen5.com 满分网.若存在,求出这个p的值;若不存在,说明理由.
查看答案
设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.
查看答案
若M={-1,0,1} N={-2,-1,0,1,2}从M到N的映射满足:对每个x∈M恒使x+f(x) 是偶数,则映射f有    个. 查看答案
已知a>0,且10x=lg(10a)+lga-1,则x=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.