满分5 > 高中数学试题 >

已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x...

已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足manfen5.com 满分网
(1)当x为正整数时,求f(n)的表达式;
(2)设λ=3,求a1+a2+a3+…+a2n
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.
(1)当x为正整数时,f(n)可以看成一个数列,利用题中条件求出数列的递推关系式即可求出f(n)的表达式; (2)先利用条件求出分段数列{an}的表达式,再对a1+a2+a3+…+a2n进行分组求和即可求出a1+a2+a3+…+a2n; (3)先分n为奇数和偶数两种情况对不等式两边进行整理,发现n为奇数时,不等式恒成立;n为偶数时,转化为关于实数λ的不等式恒成立即可求实数λ的取值范围. 【解析】 (1)记bn=f(n),由f(x+1)=f(x)+2有bn+1-bn=2对任意n∈N*都成立, 又b1=f(1)=λ,所以数列bn为首项为λ公差为2的等差数列,(2分) 故bn=2n+λ-2,即f(n)=2n+λ-2.(4分) (2)由题设λ=3 若n为偶数,则an=2n-1;(5分) 若n为奇数且n≥3,则an=f(an-1)=2an-1+λ-2=2•2n-2+λ-2=2n-1+λ-2=2n-1+1(6分) 又a1=λ-2=1, 即 a1+a2+a3++a2n=(a1+a3++a2n-1)+(a2+a4++a2n)=(2+22++22n-2+n-1)+(21+23++22n-1) =(1+21+22++22n-1)+n-1=22n+n-2.(9分) (3)当n为奇数且n≥3时,an+1an+2-anan+1=an+1(an+2-an)=2n[2n+1+λ-2-(2n-1+λ-2)]=3•22n-1>0;(10分) 当n为偶数时,an+1an+2-anan+1=an+1(an+2-an)=(2n+λ-2)(2n+1-2n-1)]=3•2n-1(2n+λ-2),(11分) 因为anan+1<an+1an+2,所以2n+λ-2>0,(12分) ∵n为偶数,∴n≥2, ∵2n+λ-2单增∴4+λ-2>0,即λ>-2(13分) 故λ的取值范围为(-2,+∞).(14分).
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,其中e是无理数,a∈R.
(1)若a=1时,f(x)的单调区间、极值;
(2)求证:在(1)的条件下,manfen5.com 满分网
(3)是否存在实数a,使f(x)的最小值是-1,若存在,求出a的值;若不存在,说明理由.
查看答案
已知M(0,-2),点A在x轴上,点B在y轴的正半轴,点P在直线AB上,且满足manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=0.
(1)当A点在x轴上移动时,求动点P的轨迹C的方程;
(2)过(-2,0)的直线l与轨迹C交于E、F两点,又过E、F作轨迹C的切线l1、l2,当l1⊥l2时,求直线l的方程.
查看答案
manfen5.com 满分网在四棱锥P-ABCD中,AD⊥AB,CD∥AB∥MN,PD⊥底面ABCD,manfen5.com 满分网,直线PA与底面ABCD成60°角,点M,N分别是PA、PB的中点.
(Ⅰ)求二面角P-MN-D的大小;
(Ⅱ)当manfen5.com 满分网的值为多少时,∠CND为直角?
查看答案
甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2
(1)求ξ,η的分布列
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.
查看答案
已知tanθ=2
(1)求tan(manfen5.com 满分网)的值;
(2)求cos2θ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.