满分5 > 高中数学试题 >

如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE...

如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AC=AA1=4,∠E=60°,点B为DE中点.
(Ⅰ)求证:平面A1BC⊥平面A1ABB1
(Ⅱ)设二面角A1-BC-A的大小为α,直线AC与平面A1BC所成的角为β,求sin(α+β)的值.

manfen5.com 满分网
(1)要证明平面A1BC⊥平面A1ABB1,关键是要在一个平面内找到一条与另外一个平面垂直的直线,我可们以利用已知,证明AB⊥BC,AA1⊥BC,根据已知条件,我们有两种思路证明线线垂直的办法,进而根据线面垂直的判定定理,得到BC垂直平面A1ABB1.再由面面垂直的判定定理得到结论; (2)由(Ⅰ)可知A1B⊥BC,AB⊥BC即∠A1BA为二面角A1-BC-A的平面角,即∠A1BA=α,由平面A1BC⊥平面A1ABB1,且平面A1BC∩平面A1ABB1=A1B,得AF⊥平面A1BC,即∠ACD为直线AC与平面A1BC所成的角,即∠ACD=β.求出α、β的三角函数值后,利用两角和的正弦公式即可得到答案,而求α、β有两种方法:一是构造三角形,解三角形;二是建立空间坐标系,利用空间向量求解. (Ⅰ)证法一:在平行四边形ACDE中, ∵AE=2,AC=4,∠E=60°,点B为DE中点. ∴∠ABE=60°,∠CBD=30°,从而∠ABC=90°,即AB⊥BC. 又AA1⊥面ABC,BC⊂面ABC ∴AA1⊥BC,而AA1∩AB=A, ∴BC⊥平面A1ABB1. ∵BC⊂平面A1BC ∴平面A1BC⊥平面A1ABB1 证法二、∵AE=2,AC=4,∠E=60°,点B为DE中点. ∴AB=2,,AB2+BC2=16=AC2, ∴AB⊥BC. 又AA1⊥面ABC,BC⊂面ABC, ∴AA1⊥BC,而AA1∩AB=A, ∴BC⊥平面A1ABB1 ∵BC⊂平面A1BC, ∴平面A1BC⊥平面A1ABB1. (Ⅱ)方法一、由(Ⅰ)可知A1B⊥BC,AB⊥BC ∴∠A1BA为二面角A1-BC-A的平面角,即∠A1BA=α, 在Rt△A1AB中,,. 以A为原点,建立空间直角坐标系A-xyz如图所示, 其中A1(0,0,4),,C(0,4,0),,,, 设为平面A1BC的一个法向量,则,∴即 令y=1,得平面A1BC的一个法向量,则, 又,∴, ∴, 即sin(α+β)=1.(12分) 方法二、由(Ⅰ)可知A1B⊥BC,AB⊥BC ∴∠A1BA为二面角A1-BC-A的平面角,即∠A1BA=α, 在Rt△A1AB中,,,. 过点A在平面A1ABB1内作AF⊥A1B于F,连接CF, 则由平面A1BC⊥平面A1ABB1,且平面A1BC∩平面A1ABB1=A1B,得AF⊥平面A1BC ∴∠ACF为直线AC与平面A1BC所成的角,即∠ACF=β. 在Rt△ACF中,,,. ∴, 即sin(α+β)=1.
复制答案
考点分析:
相关试题推荐
当正三角形的边长为n(n∈N*)时,图(1)中点的个数为f3(n)=1+2+3+…+(n+1)=manfen5.com 满分网(n+1)(n+2);当正方形的边长为n时,图(2)中点的个数为f4(n)=(n+1)2;在计算图(3)中边长为n的正五边形中点的个数f5(n)时,观察图(4)可得f5(n)=f4(n)+f3(n-1)=(n+1)2+manfen5.com 满分网=manfen5.com 满分网(n+1)(3n+2);….则边长为n的正k边形(k≥3,k∈N)中点的个数fk(n)=   
manfen5.com 满分网 查看答案
如图,一动点沿着棱长为1的正方体的棱从A1点出发到C点,走法是每走一条棱算一步,必须走三步到达C(例如,A1→B1→B→C是一种走法).已知棱上标识的是经过该棱时发生堵塞的概率,则动点从A1点出发到C点发生堵塞的概率最小值为   
manfen5.com 满分网 查看答案
函数y=f(x)是偶函数,当x>0时,f(x)=x+manfen5.com 满分网,且当x∈[-3,-1]时,n≤f(x)≤m,则m-n的最小值为    查看答案
若a=manfen5.com 满分网(sinx+cosx)dx,则二项式(amanfen5.com 满分网-manfen5.com 满分网6展开式中x2项的系数为    查看答案
如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,则cosθ=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.