满分5 > 高中数学试题 >

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭...

已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为manfen5.com 满分网,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+manfen5.com 满分网y+3=0相切,求椭圆方程.

manfen5.com 满分网
(1)设出直线l与圆O的切点为C,椭圆的右顶点为D,根据切线性质得到三角形OCD为直角三角形,且得到OC和OD及角ODC的度数,利用勾股定理及椭圆的简单性质a2=b2+c2表示出CD,根据余弦函数的定义以及离心率公式即可求出e的值; (2)根据(1)求出的离心率及a2=b2+c2设出a和b,由字母m写出椭圆的标准方程,从而表示出点A的坐标,得到AF的长,求出直线AF的斜率,进而得到∠AFB等于60°,根据直角三角形中30°所对的直角边等于斜边的一半由AF的长表示出FB的长,从而得到点B的坐标,根据中点坐标公式求出FB中点G的坐标,然后根据直角三角形外接圆的圆心为斜边的中点,得到外接圆的半径,由直线与圆相切时圆心到直线的距离等于半径,利用点到直线的距离公式表示出点G到直线l的距离d,让d等于表示出的半径,列出关于m的方程,求出方程的解即可得到m的值,从而确定出椭圆的方程. 【解析】 (1)如图,设直线l与圆O相切于C点,椭圆的右顶点为D,则由题意知△OCD为直角三角形, 且OC=b,OD=a,∠ODC=, ∴CD===c(c为椭圆的半焦距), ∴椭圆的离心率e==cos=. (2)由(1)知,=, ∴设a=2m(m>0),则b=m, ∴椭圆方程为+=1. ∴A(0,m), ∴AF=2m,kAF=, ∴∠AFB=60°, 在Rt△AFB中,有FB=4m, ∴B(3m,0),设FB的中点为G,则G(m,0), ∵△AFB为直角三角形, ∴过A、B、F三点的圆的圆心为斜边FB的中点G,且半径为2m, ∵圆G与直线l:x+y+3=0相切, ∴=2m, ∵m是大于0的常数, ∴m=1,故所求的椭圆方程为+=1.
复制答案
考点分析:
相关试题推荐
为了缓解高考压力,某中学高三年级成立了文娱队,每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且manfen5.com 满分网
(1)求文娱队的人数;
(2)求ξ的分布列并计算Eξ.
查看答案
如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AC=AA1=4,∠E=60°,点B为DE中点.
(Ⅰ)求证:平面A1BC⊥平面A1ABB1
(Ⅱ)设二面角A1-BC-A的大小为α,直线AC与平面A1BC所成的角为β,求sin(α+β)的值.

manfen5.com 满分网 查看答案
当正三角形的边长为n(n∈N*)时,图(1)中点的个数为f3(n)=1+2+3+…+(n+1)=manfen5.com 满分网(n+1)(n+2);当正方形的边长为n时,图(2)中点的个数为f4(n)=(n+1)2;在计算图(3)中边长为n的正五边形中点的个数f5(n)时,观察图(4)可得f5(n)=f4(n)+f3(n-1)=(n+1)2+manfen5.com 满分网=manfen5.com 满分网(n+1)(3n+2);….则边长为n的正k边形(k≥3,k∈N)中点的个数fk(n)=   
manfen5.com 满分网 查看答案
如图,一动点沿着棱长为1的正方体的棱从A1点出发到C点,走法是每走一条棱算一步,必须走三步到达C(例如,A1→B1→B→C是一种走法).已知棱上标识的是经过该棱时发生堵塞的概率,则动点从A1点出发到C点发生堵塞的概率最小值为   
manfen5.com 满分网 查看答案
函数y=f(x)是偶函数,当x>0时,f(x)=x+manfen5.com 满分网,且当x∈[-3,-1]时,n≤f(x)≤m,则m-n的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.