(1)要求证:CE∥平面C1E1F,取CC1的中点G,连接B1G交C1F于点F1,连接E1F1,A1G,FG,证明E1F1∥CE即可;
(2)要证:平面C1E1F⊥平面CEF,证明C1F⊥CF,EF⊥C1F即可.
证明:(1)取CC1的中点G,连接B1G交C1F于点F1,连接E1F1,A1G,FG,
∵F是BB1的中点,BCC1B1是矩形,
∵四边形FGC1B1也是矩形,
∴FC1与B1G相互平分,即F1是B1G的中点.
又E1是A1B1的中点,∴A1G∥E1F1.
又在长方体中,AA1綊CC1,E,G分别为AA1,CC1的中点,
∴A1E綊CG,∴四边形A1ECG是平行四边形,
∴A1G∥CE,∴E1F1∥CE.
∵CE⊄平面C1E1F,E1F1⊂平面C1E1F,
∴CE∥平面C1E1F.
(2)∵长方形BCC1B1中,BB1=2BC,F是BB1的中点,
∴△BCF、△B1C1F都是等腰直角三角形,
∴∠BFC=∠B1FC1=45°,
∴∠CFC1=180°-45°-45°=90°,
∴C1F⊥CF.
∵E,F分别是矩形ABB1A1的边AA1,BB1的中点,
∴EF∥AB.
又AB⊥平面BCC1B1,又C1F⊂平面BCC1B1,
∴AB⊥C1F,∴EF⊥C1F.
又CF∩EF=F,∴C1F⊥平面CEF.
∵C1F⊂平面C1E1F,∴平面C1E1F⊥平面CEF.