满分5 > 高中数学试题 >

设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M...

设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.
(1)由f(0)=2得到c的值,集合A的方程可变为f(x)-x=0,因为A={1,2},得到1,2是方程的解,根据韦达定理即可求出a和b,把a、b、c代入得到f(x)的解析式,在[-2,2]上根据函数的图象可知m和M的值. (2)由集合A={1},得到方程f(x)-x=0有两个相等的解都为1,根据韦达定理求出a,b,c的关系式,根据a大于等于1,利用二次函数求最值的方法求出在[-2,2]上的m和M,代入g(a)=m+M中得到新的解析式g(a)=9a--1,根据g(a)的在[1,+∞)上单调增,求出g(a)的最小值为g(1),求出值即可. 【解析】 (1)由f(0)=2可知c=2, 又A={1,2},故1,2是方程ax2+(b-1)x+c=0的两实根. ∴,解得a=1,b=-2 ∴f(x)=x2-2x+2=(x-1)2+1, 因为x∈[-2,2],根据函数图象可知,当x=1时, f(x)min=f(1)=1,即m=1; 当x=-2时,f(x)max=f(-2)=10,即M=10. (2)由题意知,方程ax2+(b-1)x+c=0有两相等实根x1=x2=1, 根据韦达定理得到:,即, ∴f(x)=ax2+bx+c=ax2+(1-2a)x+a,x∈[-2,2]其对称轴方程为x==1- 又a≥1,故1- ∴M=f(-2)=9a-2 m= 则g(a)=M+m=9a--1 又g(a)在区间[1,+∞)上为单调递增的,∴当a=1时,g(a)min=
复制答案
考点分析:
相关试题推荐
已知:在函数的图象上,f(x)=mx3-x以N(1,n)为切点的切线的倾斜角为manfen5.com 满分网
(I)求m,n的值;
(II)是否存在最小的正整数k,使得不等式f(x)≤k-1993对于x∈[-1,3]恒成立?如果存在,请求出最小的正整数k,如果不存在,请说明理由.
查看答案
已知函数manfen5.com 满分网(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),
(1)求实数a,b的值;
(2)求函数f(x)的值域
查看答案
A=manfen5.com 满分网,B={y|y=x2+x+1,x∈R}
(1)求A,B;
(2)求A∪B,A∩CRB.
查看答案
某商场国庆期间搞促销活动,规定:顾客购物总金额不超过500元,不享受任何折扣,如果顾客购物总金额超过500元,则超过500元部分享受一定的折扣优惠,按下表折扣分别累计计算:
可以享受折扣优惠金额折扣率
不超过200元的部分5%
超过200元的部分10%
某人在此商场购物获得的折扣金额为35元,则他购物实际所付金额为    元. 查看答案
已知f(x)=log3x+2(x∈[1,9]),则函数y=[f(x)]2+f(x2)的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.