满分5 > 高中数学试题 >

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂...

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,圆O的直径为9.
(1)求证:平面ABCD⊥平面ADE;
(2)求二面角D-BC-E的平面角的正切值.

manfen5.com 满分网
(1)欲证平面ABCD⊥平面ADE,根据面面垂直的判定定理可知在平面ABCD内一直线与平面ADE垂直,易证CD⊥平面ADE,从而得到结论; (2)过点E作EF⊥AD于点F,作FG∥AB交BC于点G,连接GE,根据二面角平面角的定义可知∠FGE是二面角D-BC-E的平面角,在Rt△EFG中,求出此角的正切值即可. (1)证明:∵AE垂直于圆O所在平面,CD在圆O所在平面上, ∴AE⊥CD. 在正方形ABCD中,CD⊥AD, ∵AD∩AE=A,∴CD⊥平面ADE. ∵CD⊂平面ABCD, ∴平面ABCD⊥平面ADE. (2)∵CD⊥平面ADE,DE⊂平面ADE, ∴CD⊥DE. ∴CE为圆O的直径,即CE=9. 设正方形ABCD的边长为a, 在Rt△CDE中,DE2=CE2-CD2=81-a2, 在Rt△ADE中,DE2=AD2-AE2=a2-9, 由81-a2=a2-9,解得,. ∴. 过点E作EF⊥AD于点F,作FG∥AB交BC于点G,连接GE, 由于AB⊥平面ADE,EF⊂平面ADE, ∴EF⊥AB. ∵AD∩AB=A, ∴EF⊥平面ABCD. ∵BC⊂平面ABCD, ∴BC⊥EF. ∵BC⊥FG,EF∩FG=F, ∴BC⊥平面EFG. ∵EG⊂平面EFG, ∴BC⊥EG. ∴∠FGE是二面角D-BC-E的平面角. 在Rt△ADE中,,AE=3,DE=6, ∵AD•EF=AE•DE, ∴. 在Rt△EFG中,, ∴. 故二面角D-BC-E的平面角的正切值为.
复制答案
考点分析:
相关试题推荐
某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.
查看答案
已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数manfen5.com 满分网的图象关于直线manfen5.com 满分网对称,求φ的值.
查看答案
在极坐标系中,已知两点A、B的极坐标分别为(3,manfen5.com 满分网),(4,manfen5.com 满分网),则△AOB(其中O为极点)的面积为    查看答案
如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为   
manfen5.com 满分网 查看答案
如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是    (填出所有可能的序号).manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.