满分5 > 高中数学试题 >

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P...

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为manfen5.com 满分网的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.
(1)利用直线与圆相切时对应的圆心到直线的距离等于半径即可求双曲线G的渐近线的方程; (2)利用渐近线设出双曲线G的方程,把直线l的方程与双曲线G的方程联立求出A,B两点的坐标之间的关系式,再利用|PA|•|PB|=|PC|2.即可求出双曲线G的方程; (3)利用条件先设椭圆S的方程+=1(a>2),再设垂直于l的平行弦的两端点以及中点的坐标,把两端点坐标代入椭圆S的方程方程,用点差法求出中点所在轨迹,再与题中条件相结合即可求椭圆S的方程. 【解析】 (1)设双曲线G的渐近线的方程为y=kx, 则由渐近线与圆x2+y2-10x+20=0相切可得=, 所以k=±,即双曲线G的渐近线的方程为y=±x.(3分) (2)由(1)可设双曲线G的方程为x2-4y2=m, 把直线l的方程y=(x+4)代入双曲线方程, 整理得3x2-8x-16-4m=0, 则xA+xB=,xAxB=-.(*) ∵|PA|•|PB|=|PC|2,P、A、B、C共线且P在线段AB上, ∴(xP-xA)(xB-xP)=(xP-xC)2,即(xB+4)(-4-xA)=16, 整理得4(xA+xB)+xAxB+32=0. 将(*)代入上式得m=28, ∴双曲线的方程为-=1.(8分) (3)由题可设椭圆S的方程为+=1(a>2), 设垂直于l的平行弦的两端点分别为M(x1,y1),N(x2,y2),MN的中点为P(x,y), 则+=1,+=1, 两式作差得+=0. 由于=-4,x1+x2=2x,y1+y2=2y, 所以-=0, 所以,垂直于l的平行弦中点的轨迹为直线-=0截在椭圆S内的部分. 又由已知,这个轨迹恰好是G的渐近线截在S内的部分,所以=,即a2=56, 故椭圆S的方程为+=1.(13分)
复制答案
考点分析:
相关试题推荐
随着国家政策对节能环保型小排量车的调整,两款1.1升排量的Q型车、R型车的销量引起市场的关注.已知2010年1月Q型车的销量为a辆,通过分析预测,若以2010年1月为第1月,其后两年内Q型车每月的销量都将以1%的比率增长,而R型车前n个月的销售总量Tn大致满足关系式:Tn=228a(1.012n-1)(n≤24,n∈N*).
(1)求Q型车前n个月的销售总量Sn的表达式;
(2)比较两款车前n个月的销售总量Sn与Tn的大小关系;
(3)试问从第几个月开始Q型车的月销售量小于R型车月销售量的20%,并说明理由.
(参考数据:manfen5.com 满分网≈1.09,manfen5.com 满分网≈8.66)
查看答案
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是
CC1、BC的中点,点P在A1B1上,且满足manfen5.com 满分网manfen5.com 满分网(λ∈R).
(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;
(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.

manfen5.com 满分网 查看答案
2011年1月,某校就如何落实“湖南省教育厅《关于停止普通高中学校组织三年级学生节假日补课的通知》”,举办了一次座谈会,共邀请50名代表参加,他们分别是家长20人,学生15人,教师15人.
(1)从这50名代表中随机选出2名首先发言,问这2人是教师的概率是多少?
(2)从这50名代表中随机选出3名谈假期安排,若选出3名代表是学生或家长,求恰有1人是家长的概率是多少?
(3)若随机选出的2名代表是学生或家长,求其中是家长的人数为ξ的分布列和数学期望.
查看答案
设△ABC的内角A,B,C所对的边长分别为a,b,c,且manfen5.com 满分网
(1)求角A的大小;
(2)若角manfen5.com 满分网,BC边上的中线AM的长为manfen5.com 满分网,求△ABC的面积.
查看答案
已知函数f(x)=(x2-x-manfen5.com 满分网)eax(a≠0).
(1)曲线y=f(x)在点A(0,f(0))处的切线方程为   
(2)当a>0时,若不等式f(x)+manfen5.com 满分网≥0对x∈[-manfen5.com 满分网,+∞)恒成立,则实数a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.