满分5 > 高中数学试题 >

已知函数f(x)的导函数为f′(x)=2+cosx,x∈(-1,1),且f(0)...

已知函数f(x)的导函数为f′(x)=2+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为( )
A.(0,1)
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网manfen5.com 满分网
先根据f′(x)=2+cosx,x∈(-1,1),且f(0)=0判断f(x)在(-1,1)上单调递增,进而根据函数的导函数求得函数f(x)的解析式,判断出函数f(x)为奇函数,进而根据f(1-x)+f(1-x2)<0,建立不等式组,求得x的范围. 【解析】 ∵f′(x)=2+cosx>0,f(0)=0 ∴f(x)在(-1,1)上单调递增 ∵f(x)=2x+sinx,从而得f(x)是奇函数; 所以f(1-x)<-f(1-x2)=f(x2-1)即有解得 故选B.
复制答案
考点分析:
相关试题推荐
现有甲、乙两骰子,从1点到6点出现的概率都是1/6,掷甲、乙两颗骰子,设分别出现的点数为a、b时,则满足manfen5.com 满分网的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0,若命题p且q为真,则a取值范围为( )
A.a≤-2或a=1
B.a≤-2或1≤a≤2
C.a≥1
D.-2a≤a≤1
查看答案
manfen5.com 满分网的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案
已知函数f(x)=xa,g(x)=ax,h(x)=logax(其中a>0,a≠1)在同一坐标系中画出其中两个函数在第一象限内的图象,其中正确的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
三个数a,b,c既是等差数列,又是等比数列,则a,b,c间的关系为( )
A.b-a=c-b
B.b2=ac
C.a=b=c
D.a=b=c≠0
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.