满分5 > 高中数学试题 >

已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). ...

已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值; (2)将曲线y=g(x)在点x=x处的切线与y轴垂直转化成方程g'(x)=0有实数解,只需研究导函数的最小值即可. 【解析】 (1)∵, ∴ 令f'(x)=0,得x=a. ①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值. ②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减, 当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增, 所以当x=a时,函数f(x)取得最小值lna ③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减, 所以当x=e时,函数f(x)取得最小值. .综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值; 当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna; 当a≥e时,函数f(x)在区间(0,e]上的最小值为. (2)∵g(x)=(lnx-1)ex+x,x∈(0,e], ∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=. 由(1)可知,当a=1时,. 此时f(x)在区间(0,e]上的最小值为ln1=0,即.(10分) 当x∈(0,e],,, ∴. 曲线y=g(x)在点x=x处的切线与y轴垂直等价于方程g'(x)=0有实数解.(13分) 而g'(x)>0,即方程g'(x)=0无实数解.、故不存在x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是圆柱OQ的轴截面,点P在圆柱OQ的底面圆周上,G是DP的中点,
圆柱OQ的底面圆的半径OA=2,侧面积为manfen5.com 满分网,∠AOP=120°.
(1)求证:AG⊥BD;
(2)求二面角P-AG-B的平面角的余弦值.

manfen5.com 满分网 查看答案
一个盒子内装有八张卡片,每张卡片上面分别写着下列函数中的一个:f1(x)=x,f2(x)=2x,f3(x)=ln(|x|+3),f4(x)=sinx,f5(x)=|sinx|,f6(x)=cosx,f7(x)=cos|x|,f8(x)=3,而且不同卡片上面写着的函数互不相同,每张卡片被取出的概率相等.
(1)如果从盒子中一次随机取出两张卡片,并且将取出的两张卡片上的函数相加得到一个新函数,求所得新函数是奇函数的概率;
(2)现从盒子中一次随机取出一张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的函数是偶函数则停止取出卡片,否则继续取出卡片.设取出了ξ次才停止取出卡片,求ξ的数学期望.
查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<manfen5.com 满分网)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

manfen5.com 满分网 查看答案
在极坐标系中,圆p=2上的点到直线p(cosθmanfen5.com 满分网)=6的距离的最小值是     查看答案
如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则manfen5.com 满分网的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.