满分5 > 高中数学试题 >

如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与B...

如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )
manfen5.com 满分网
A.30°
B.45°
C.60°
D.90°
本题求解宜用向量法来做,以D为坐标原点,建立空间坐标系,求出两直线的方向向量,利用数量积公式求夹角即可 【解析】 如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系, ∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1 ∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0) ∴=(1,0,-1),=(-1,-1,0) ∴cosθ== 故两向量夹角的余弦值为,即两直线PA与BD所成角的度数为60°. 故选C
复制答案
考点分析:
相关试题推荐
已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求a及Sn=a1+a2+a3+…+an
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
查看答案
manfen5.com 满分网如图,三棱锥P-ABC中,PB⊥底面ABC于B,∠BCA=90°,PB=BC=CA=manfen5.com 满分网,点E,F分别是PC,PA的中点,求二面角A-BE-F的余弦值.
查看答案
已知曲线C:manfen5.com 满分网,直线l:ρ(cosθ-2sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l距离的最小值.
查看答案
已知在一个二阶矩阵M对应变换的作用下,点A(1,2)变成了点A′(7,10),点B(2,0)变成了点B′(2,4),求矩阵M.
查看答案
已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(abc≠0).
(1)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(2)在同一函数图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点为C(x,y),记直线AB的斜率为k,
①对于二次函数f(x)=ax2+bx+c,求证:k=f′(x);
②对于“伪二次函数”g(x)=ax2+bx+clnx,是否有①同样的性质?证明你的结论.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.