满分5 > 高中数学试题 >

如图,已知圆,经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)...

manfen5.com 满分网如图,已知圆manfen5.com 满分网,经过椭圆manfen5.com 满分网(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)倾斜角为manfen5.com 满分网的直线1交椭圆于C,D两点
(1)求椭圆的方程
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
(1)依据题意可求得F,B的坐标,求得c和b,进而求得a,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去,利用判别式大于0求得m的范围,设出C,D的坐标,利用韦达定理表示出x1+x2和 x1x2,进而利用直线方程求得y1y2,表示出和,进而求得•的表达式,利用F在圆E的内部判断出•<0求得m的范围,最后综合可求得md 范围. 【解析】 (1)过点F、B, ∴F(2,0),, 故椭圆的方程为 (2)直线l: 消y得2x2-2mx+(m2-6)=0 由△>0⇒, 又⇒ 设C(x1,y1)、D(x2,y2),则x1+x2=m,,,, ∴ ∵F在圆E的内部,∴, 又⇒.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=1,manfen5.com 满分网,且manfen5.com 满分网,{bn}为等比数列.
(Ⅰ)求实数λ及数列{an},{bn}的通项公式;
(Ⅱ)若Sn是数列{an}的前n项和,求Sn
查看答案
已知斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求C1到平面A1AB的距离;
(Ⅲ)求二面角A-A1B-C的余弦值.

manfen5.com 满分网 查看答案
为了了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,没得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
频数25141342
表2:女生身高频数分布表
身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
频数1712631
(Ⅰ)求该校男生的人数并画出其频率分布直方图;
(Ⅱ)估计该校学生身高(单位:cm)在[165,180)的概率;
(Ⅲ)在男生样本中,从身高(单位:cm)在[180,190)的男生中任选3人,设ξ表示所选3人中身高(单位:cm)在[180,185)的人数,求ξ的分布列和数学期望.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(Ⅰ)若f(x)=1,求manfen5.com 满分网的值;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足manfen5.com 满分网,求f(2B)的取值范围.
查看答案
如果过点(0,1)斜率为k的直线l与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,那么直线l的斜率k=    ;不等式组manfen5.com 满分网表示的平面区域的面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.