满分5 > 高中数学试题 >

设f(x)=为奇函数,a为常数, (Ⅰ)求a的值; (Ⅱ)证明:f(x)在(1,...

设f(x)=manfen5.com 满分网为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>manfen5.com 满分网+m恒成立,求实数m的取值范围.
(1)利用奇函数的定义找关系求解出字母的值,注意对多解的取舍. (2)利用单调性的定义证明函数在给定区间上的单调性,关键要在自变量大小的前提下推导出函数值的大小. (3)将恒成立问题转化为函数的最值问题,用到了分离变量的思想. 【解析】 (1)∵f(x)是奇函数,∴f(-x)=-f(x). ∴. 检验a=1(舍),∴a=-1. (2)由(1)知 证明:任取1<x2<x1,∴x1-1>x2-1>0 ∴ 即f(x1)>f(x2). ∴f(x)在(1,+∞)内单调递增. (3)对[3,4]于上的每一个x的值,不等式恒成立,即恒成立. 令.只需g(x)min>m, 又易知在[3,4]上是增函数, ∴. ∴时原式恒成立.
复制答案
考点分析:
相关试题推荐
已知△ABC中,角A,B,C对应的边为a,b,c,A=2B,manfen5.com 满分网
(1)求sinC的值;
(2)若角A的平分线AD的长为2,求b的值.

manfen5.com 满分网 查看答案
已知数列{an}满足条件:manfen5.com 满分网manfen5.com 满分网,则对任意正偶数n,manfen5.com 满分网的概率为     查看答案
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),manfen5.com 满分网,在有穷数列manfen5.com 满分网中任取前k项相加,则前k项和大于manfen5.com 满分网的概率为    查看答案
设P为△ABC内一点,且manfen5.com 满分网,则△ABP的面积与△ABC面积之比为    manfen5.com 满分网 查看答案
函数f(x)对于任意实数x满足条件f(x+2)=manfen5.com 满分网,若f(1)=-5,则f[f(5)]=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.